ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-19
    Description: Excessive numerical diffusion is one of the major limitations in the representation of long-range transport by chemistry transport models. In the present study, we focus on excessive diffusion in the vertical direction, which has been shown to be a major issue, and we explore three possible ways of addressing this problem: increasing the vertical resolution, using an advection scheme with anti-diffusive properties and more accurately representing the vertical wind. This study was carried out using the CHIMERE chemistry transport model for the 18 March 2012 eruption of Mount Etna, which released about 3 kt of sulfur dioxide into the atmosphere in a plume that was observed by satellite instruments (the Infrared Atmospheric Sounding Interferometer instrument, IASI, and the Ozone Monitoring Instrument, OMI) for several days. The change from the classical Van Leer (1977) scheme to the Després and Lagoutière (1999) anti-diffusive scheme in the vertical direction was shown to provide the largest improvement to model outputs in terms of preserving the thin plume emitted by the volcano. To a lesser extent, the improved representation of the vertical wind field was also shown to reduce plume dispersion. Both of these changes helped to reduce vertical diffusion in the model as much as a brute-force approach (increasing vertical resolution).
    Description: Published
    Description: 5707–5723
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-26
    Description: In this paper, Sun-photometer multichannel measurements of aerosol optical depths (AODs) in the visible and near-infrared spectral ranges, and Ångström parameters of the plume issued from the Pacaya volcano, Guatemala, are presented for the first time. These observations, made during a short-term campaign carried out on 29 and 30 January 2011, indicate a diluted (AODs lower than 0.1) volcanic plume composed of small particles (Ångström exponent 1.0 on 29 January and 1.4 on 30 January). Results are consistent with an ash-free plume. Finally, the impact of the choice of different wavelength pairs for the calculation of the Ångström parameters from the spectral AOD observations is tested and critically discussed.
    Description: Published
    Description: Article 36
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-05
    Description: In 2013, a multidisciplinary research cluster named EtnaPlumeLab (EPL) was established, gathering experts from volcanology and atmospheric science communities. Target of EPL is to advance the understanding of Mt. Etna’s gas and aerosol emissions and the related processes, from source to its regional climatic impact in the Mediterranean area. Here, we present the cluster and its three interacting modules: EPL-RADIO (Radioactive Aerosols and other source parameters for better atmospheric Dispersion and Impact estimatiOns), SMED (Sulfur MEditerranean Dispersion) and Med-SuV (MEDiterranean SUpersite Volcanoes) Work Package 5. First results have provided pioneering highlights on the relevance of Mt. Etna’s plume impact at the Mediterranean regional scale. These results underline that further efforts need to be made to get insight into a synoptic volcanogenic-atmospheric chemistry/climatic understanding of volcanic plumes impact.
    Description: Published
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology ; 01.01. Atmosphere ; climatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-07
    Description: Mount Etna volcano (Sicily, Italy) is the place where short-lived radioactive disequilibrium measurements in volcanic gases were initiated more than 40 years ago. Almost two decades after the last measurements in Mount Etna plume, we carried out in 2015 a new survey of 210Pb-210Bi-210Po radioactive disequilibria in gaseous emanations from the volcano. These new results [(210Po/210Pb) = 42 and (210Bi/210Pb) = 7.5] are in fair agreement with those previously reported. Previously published degassing models fail to explain satisfactorily measured activity ratios. We present here a new degassing model, which accounts for 222Rn enrichment in volcanic gases and its subsequent decay into 210Pb within gas bubbles en route to the surface. Theoretical short-lived radioactive disequilibria in volcanic gases predicted by this new model differ from those produced by the former models and better match the values we measured in the plume during the 2015 campaign. A Monte Carlo-like simulation based on variable parameters characterising the degassing process (magma residence time in the degassing reservoir, gas transfer time, Rn-Pb-Bi-Po volatilities, magma volatile content) suggests that short-lived disequilibria in volcanic gases may be of use to infer both magma dynamics and degassing kinetics beneath Mount Etna, and in general at basaltic volcanoes. However, this simulation emphasizes the need for accurately determined input parameters in order to produce unambiguous results, allowing sharp characterisation of degassing processes.
    Description: Published
    Description: Article 27
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: adioactive disequilibria 210Pb-210Bi-210Po; volcanic gases; degassing processes; geochemical modelling;Mount Etna ; 04.08. Volcanology ; gas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-09
    Description: The emission of gases and aerosols due to volcanic activity may impact significantly atmospheric composition, cloud occurrence and properties, and the regional and global climate. While the effects of strong explosive (stratospheric) eruptions are relatively well known, limited information on the impacts of small to moderate volcanic activities, including passive degassing, is available. In this paper, the downwind impact of Mount Etna's sulfur emissions on the central Mediterranean is investigated on a statistical basis over the period 2000e2013 using: (a) daily sulfur dioxide emission rates measured near crater at Mount Etna with ground-based ultraviolet spectrophotometers, (b) Lagrangian trajectories and simulated plume dispersion obtained with the FLEXPART (FLEXible PARTicle dispersion) model, and (c) long-term observations of column SO2 concentration and aerosol Ångstr€om exponent a at Lampedusa (35.5 N, 12.6 E). This statistical analysis has allowed, for the first time, the characterization of decadal impact of Mount Etna's sulfur emissions on the sulfur dioxide and the aerosol microphysical/optical properties in the central Mediterranean. On average, statistically significant higher SO2 concentrations and smaller aerosol sizes are present when air masses from Mount Etna overpass Lampedusa. Despite being upwind of Lampedusa for only 5% of the time, Mount Etna is potentially responsible for up to 40% and 20% of the SO2 and a extreme values (exceedances of a fixed threshold), respectively, at this location. The most important factor determining this perturbation is the prevailing dynamics, while the magnitude of the SO2 emission rates from Mount Etna appears to be likely important only for relatively strong emissions. The observed perturbations to the aerosol size distribution are expected to produce a direct regional radiative effect in this area.
    Description: Published
    Description: 77-88
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology ; 01.01. Atmosphere ; climatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...