ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-25
    Description: The southeastern flank of Etna volcano slides into the Ionian Sea at rates of centimeters per year. The prevailing understanding is that pressurization of the magmatic system, and not gravitational forces, controls flank movement, although this has also been proposed. So far, it has not been possible to separate between these processes, because no data on offshore deformation were available until we conducted the first long-term seafloor displacement monitoring campaign from April 2016 until July 2017. Unprecedented seafloor geodetic data reveal a 〉4-cm slip along the offshore extension of a fault related to flank kinematics during one 8-day-long event in May 2017, while displacement on land peaked at ~4 cm at the coast. As deformation increases away from the magmatic system, the bulk of Mount Etna's present continuous deformation must be driven by gravity while being further destabilized by magma dynamics. We cannot exclude flank movement to evolve into catastrophic collapse, implying that Etna's flank movement poses a much greater hazard than previously thought. The hazard of flank collapse might be underestimated at other coastal and ocean island volcanoes, where the dynamics of submerged flanks are unknown.
    Description: Published
    Description: eaat9700
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: seafloor geodesy ; ground deformation ; volcano-tectonics ; fault ; 04.03. Geodesy ; 04.07. Tectonophysics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-07
    Description: Coastal and ocean island volcanoes are renowned for having unstable flanks. This can lead to flank deformation on a variety of temporal and spatial scales ranging from slow creep to catastrophic sector collapse. A large section of these unstable flanks is often below sea level, where information on the volcano-tectonic structure and ground deformation is limited. Consequently, kinematic models that attempt to explain measured ground deformation onshore associated with flank instability are poorly constrained in the offshore area. Here, we attempt to determine the locations and the morpho-tectonic structures of the boundaries of the submerged unstable southeastern flank of Mount Etna (Italy). The integration of new marine data (bathymetry, microbathymetry, offshore seismicity, reflection seismic lines) and published marine data (bathymetry, seafloor geodesy, reflection seismic lines) allows identifying the lineament north of Catania Canyon as the southern lateral boundary with a high level of confidence. The northern and the distal (seaward) boundaries are less clear because no microbathymetric or seafloor geodetic data are available. Hypotheses for their locations are presented. Geophysical imaging suggests that the offshore Timpe Fault System is a shallow second-order structure that likely results from extensional deformation within the moving flank. Evidence for active uplift and compression upslope of the amphitheater-shaped depression from seismic data along with subsidence of the onshore Giarre Wedge block observed in ground deformation data leads us to propose that this block is a rotational slump, which moves on top of the large-scale instability. The new shoreline-crossing structural assessment may now inform and improve kinematic models.
    Description: Published
    Description: 810790
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: seafloor ; fault ; flank dynamics ; hydroacoustic ; geodesy ; seismic profiles ; 04.07. Tectonophysics ; 04.08. Volcanology ; 04.06. Seismology ; 04.02. Exploration geophysics ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-02
    Description: The vessel left the port of Catania with a delay of seven days owing to bad weather conditions during the transit to Catania. The four-days long cruise with five scientists took place with excellent weather conditions without exception. The main purpose of the cruise was to collect high-resolution seafloor bathymetric data with an Autonomous Underwater Vehicle (AUV) and a ship-based multibeam echosounder. Deployment and recovery of the AUV Abyss with the Launch-and-recovery-system (LARS) was a premiere onboard RV ALKOR. Abyss did four dives, out of which two provided important data. In addition, about 250 km of ship-based echosounder tracks were sailed and three Conductivity-Temperature-Depth (CTD) profiles were taken.
    Description: GEOMAR Helmholtz Centre for Ocean Research Kiel
    Description: Published
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Keywords: seafloor ; fault ; deformation ; hydroacoustic ; 04.03. Geodesy ; 04.08. Volcanology ; 04.07. Tectonophysics ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...