ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-23
    Description: Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as afunction of pressure, effective undercooling (ΔTeff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (∆Teff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities (Na) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5–10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density (Na) and crystal fraction (φ), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.
    Description: MIUR, PRIN 2009, FAR2012 funds to M.R. Carroll.
    Description: Published
    Description: 55
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: Plagioclase ; Nucleation rate ; Growth rate ; Basaltic melts ; Decompression ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 189 (1980), S. 1-15 
    ISSN: 1432-041X
    Keywords: Cell line ; Drosophila ; Ecdysone ; Ecdysterone ; Hormones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cells of the line Kc, derived fromDrosophila melanogaster embryos, extend long processes when exposed to ecdysteroid hormones. We have devised a quantitative assay for this morphological response, using the subline Kc-H. The assay was used to characterize the conditions required for the response. A halfmaximal response is elicited by approximately 10−8M 20-hydroxyecdysone; the response is saturated by 10−7M 20-hydroxyecdysone, which causes detectable elongation within a few hours, and a maximal response after 2–3 days. The response occurs substantially normally in the absence of serum, during growth in suspension, and in over-crowded cultures. It is not elicited by cyclic nucleotides, vertebrate growth factors, or a variety of other non-ecdysteroid reagents. Of 60 ecdysteroid compounds tested, only those which were active in other insect test systems elicited the response, and the concentrations required were approximately proportional to the concentrations active in other in vitro systems. We conclude that the response of Kc cells to 20-hydroxyecdysone retains basic features of the ecdysteroid response of intact tissues and therefore that Kc cells are a useful model system for studying ecdysteroid action.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...