ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-19
    Description: A new methodology is presented consisting of a multi-step procedure based on the integrated application of different diagnostic techniques aimed at recognizing altered and unaltered parts of architectural elements of ancient buildings and at identifying zones where structural damage has occurred on their surface. The methodology was tested on a historical building of the monumental compound in Piazza Palazzo in the historical center of the town of Cagliari (Italy). Three types of carbonate building materials have been used historically to construct ancient monuments in the historical center of Cagliari, which in order of increasing hardness are: Pietra Cantone, Tramezzario and Pietra Forte. Our methodology begins with an accurate microscopic examination of petrographic thin sections and scanning electron microscope (SEM) analysis of the above carbonate materials in order to identify their textural characteristics and especially the nature and distribution of their porosity. Other rock properties such as wet and dry bulk density were calculated from saturated and dry mass and volume respectively. In a second step we used a Leica HDS-6200 terrestrial laser scanner (TLS) to 3D model some building of the studied monumental compound (Piazza Palazzo). Surface geometrical anomalies have been modeled for the most interesting architectural elements, such as a Pietra Cantone portal in Late Gothic style inside the Antico Palazzo di Città, a historical building that hosts the civic museum bearing the same name. Since TLS technology is characterized by high productivity but is unable to investigate the inner parts of the studied materials, a third step of our procedure was complemented by several ultrasonic in situ and laboratory tests in the 54kHz - 82kHz range. The ultrasonic parameters, especially longitudinal and transversal velocities, can be measured very accurately and correlated with various material properties with reasonable confidence. This task has two objectives: one is to compare the petrographical and petrophysical rock properties with the elastic-dynamic ones, while the other is to compare TLS geometrical anomalies with the anomalies of the velocity field detected with ultrasonic methodology, which is very effective in detecting altered and/or damaged zones both on the surface and inside the building materials of architectural elements. Analogies between TLS surface geometrical anomalies and the ultrasonic velocity field are evident at the surface and in shallow parts of the investigated architectural elements, as in the mentioned Pietra Cantone ancient portal. This study illustrates how the integrated application of TLS technology and the ultrasonic method contributes in overcoming ambiguities in the interpretation of the individual dataset. Therefore the methodology proposed in this study has proved to be effective in giving useful indications aimed at formulating a recovery and preservation plan for a monumental structure and to monitor its conservation status in time.
    Description: Copernicus Meetings
    Description: Published
    Description: Vienna | Austria | 17–22 April 2016
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: diagnostic techniques ; architectural elements ; ancient buildings ; structural damage ; preservation plan ; 04. Solid Earth ; Cultural Heritage
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-19
    Description: The selection of a CO2 geologic storage site requires the choice of a study site suitable for the characterization in order to create a robust experimental database especially regarding the spatial petrophysical heterogeneities and elasto-mechanical properties of the rocks that make up a potential caprock-reservoir system. In our study the petrophysical and elasto-mechanical characterization began in a previously well drilled area in the northern part of the Sulcis coal basin (Nuraxi Figus area - SW Sardinia - Italy) where crucial geologic data were recovered from high-quality samples from stratigraphic wells and from mining galleries. The basin represents one of the most important Italian carbon reserves characterized by a great mining potential. In the study area, the Middle Eocene - Lower Oligocene Cixerri Fm. made up of terrigeneous continental rocks and the Upper Thanetian - Lower Ypresian Miliolitico Carbonate Complex in the Sulcis coal basin have been identified respectively as potential caprock and reservoir for CO2 storage. Petrophysical and geophysical investigations were carried out by a great number of laboratory tests on the core samples and in situ measurements on a mining gallery in order to characterize the potential caprock-reservoir system and to substantially reduce geologic uncertainty in the storage site characterization and in the geological and numerical modelling for the evaluation of CO2 storage capacity. In order to better define the spatial distribution of the petrophysical heterogeneity, the seismic responses from the caprock-reservoir system formations were also analysed and correlated with the petrophysical and elasto-mechanical properties In a second step of this work, we also analysed the tectonic stability of the study area by the integrated application of remote-sensing monitoring spatial geodetic techniques. In particular, the global positioning system (GPS) and interferometric synthetic aperture radar (inSAR) were considered useful tools to test the tectonic stability of the storage site. We computed the crustal strain rate of the Sulcis basin starting from the horizontal and vertical velocities detected by applying the two above remote sensing techniques. At the beginning we calculated the Eurasian intra-plate velocity and position time series of some good quality permanent GPS sites present in the study area. We then compared the computed GPS height variation of these sites with the line of sight (LOS) component of InSAR permanent scatters time series detected with the aid of the small baseline (SBAS) method and located closer to the GPS stations. The horizontal components show insignificant residual intra-plate velocities ranging between 0-1 mm/y, while the vertical velocities are comprised between 0 to 2 mm/y, testifying to the stability of the area. The same remote techniques mentioned above can be used during and after the injection of the CO2 to monitor the storage site. This remote monitoring option can be effective, cheap and repeatable.
    Description: Copernicus Meetings
    Description: Published
    Description: Vienna | Austria | 17–22 April 2016
    Description: 7A. Geofisica per il monitoraggio ambientale
    Keywords: elasto-mechanical characterization ; petrophysical heterogeneities ; caprock-reservoir system ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-02
    Description: The results provided by this study contribute to the geological characterization of a potential caprock-reservoir system for CO2 storage in the experimental area of the mining district of the Sulcis Coal Basin (south-western Sardinia, Italy). The work is aimed to improve the knowledge of the petrographic and petrophysical characteristics of the siliciclastic and carbonate geological formations that make up the potential caprock-reservoir system. Core samples from a number of wells drilled in the study area for mining purposes were analyzed especially for texture and physical properties (longitudinal velocity, density, porosity, and permeability). The preliminary integrated petrographic and petrophysical characterizations indicate that the Upper Paleocene to Early Eocene potential carbonate reservoir is heterogeneous but presents suitable reservoir zones for CO2. A preliminary analysis of the potential caprock siliciclastic lithologies of the Middle Eocene to Lower Oligocene suggests that they appear suitable for CO2 confinement. Finally, to account for the stability of the investigated area, an accurate geodynamical study of south-western Sardinia was carried out using global navigation satellite system and advanced differential interferometric synthetic aperture radar methodologies in order to estimate vertical and horizontal crustal displacements. The study area results stable, since it is characterized by surface crustal horizontal and vertical velocities smaller than 1 mm/year and few mm/year, respectively.
    Description: Regione Autonoma della Sardegna, Sardegna, Italy - University of Cagliari (Italy)
    Description: Published
    Description: id 4524
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: petrophysical properties ; carbonates ; siliciclastics ; GNSS DinSAR ; crustal displacements ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...