ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Employing both absolute and relative gravimeters, we carried out three hybrid microgravity surveys at Etna volcano between 2007 and 2009. The repeated measurements highlighted the spatio-time evolution of the gravity field associated with the volcanic unrest. We detected a gravity increase attained an amplitude of about 80 µGal on the summit area of the volcano between July 2008 and July 2009. The observed gravity increase could reflect mass accumulations into shallow magma storage system of the volcano located at 1÷2 km below sea level. We present here data and the advantages in using the combined approach of relative and absolute measurements performed at Etna volcano.
    Description: Published
    Description: Saint Petersburg, Russia
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: open
    Keywords: absolute and relative gravity ; Mt Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-04
    Description: In order to put new constrains on magnetic effects associated with mechanical stresses, high frequency monitoring of the geomagnetic field was carried out during a seismic tomography experiment (TOMOVES'96 project) at Mt. Vesuvius. Eight proton precession and one Cesium magnetometers were installed along a profile on the SW flank of the volcano to observe possible magnetic changes induced by explosions. Measurements were performed at different sampling frequencies (10 Hz, 0.5 Hz and 0.1 Hz). A remarkable change in the intensity of the magnetic field was observed in only one case. The magnetic transient lasted 12-13 min, reaching the maximum amplitude of slightly less than 15 nT.
    Description: JCR Journal
    Description: open
    Keywords: piezomagnetic effect ; artificial sources ; Mt. Vesuvius ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2883419 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-04
    Description: A large temporal anomaly was retrieved in the total geomagnetic field series recorded in 1981 on Mt. Etna at two continuously recording magnetometers, and associated with the March 17-23 eruption of the volcano. Variations were of such large scale that a 10 nT anomaly was observed at a distance of some 7 km from the eruptive events, calling for a significant extension and depth of the magnetic anomaly source. We discuss here some models which may account for such magnetic changes in relation to the eruption mechanism inferred by other data. The anomaly is thought to be accounted for by the joint effect of piezomagnetism of the country rocks and thermal demagnetisation engendered by a large intrusive dyke.
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; thermomagnetism ; electrofiltration ; piezomagnetism ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5294907 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-03
    Description: The ongoing unrest at the Campi Flegrei caldera (CFc) in southern Italy is prompting exploration of its poorly studied offshore sector. We report on a multidisciplinary investigation of the Secca delle Fumose (SdF), a submarine relief known since antiquity as the largest degassing structure of the offshore sector of CFc. We combined high-resolution morphobathymetric and seismostratigraphic data with onshore geological information to propose that the present-day SdF morphology and structure developed during the initial stages of the last CFc eruption at Monte Nuovo in AD 1538. We suggest that the SdF relief stands on the eastern uplifted border of a N-S-trending graben-like structure formed during the shallow emplacement of the Monte Nuovo feeding dike. We also infer that the high-angle bordering faults that generated the SdF relief now preferentially allow the ascent of hot brines (with an equilibrium temperature of 1798C), thereby sustaining hydrothermal degassing on the seafloor. Systematic vertical seawater profiling shows that hydrothermal seafloor venting generates a sizeable CO2, pH, and temperature anomaly in the overlying seawater column. Data for the seawater vertical profile can be used to estimate the CO2 and energy (heat) outputs from the SdF area at 50 tons/d ( 0.53 kg/s) and 80 MW, respectively. In view of the cause-effect relationship with the Monte Nuovo eruption, and the substantial gas and energy outputs, we consider that the SdF hydrothermal system needs to be included in monitoring programs of the ongoing CFc unrest.
    Description: Published
    Description: 4153–4178
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrothermal fluid ; Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...