ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The Solfatara is one of the major volcanoes of the Phlegrean Fields (Campi Flegrei) volcanic complex, and it is located in a densely populated area a few kilometres west of the city of Naples. It is an active resurgent caldera that has been characterized by a rich history of surface–ground deformation and soil diffuse degassing and fumarolic emissions, which are indications of the top of a hydrothermal plume. A seismic survey was completed in May 2009 for the characterization of the main subsurface features of the Solfatara. Using the complete data set, we have carried out surface wave inversion with high spatial resolution. A classical minimization of a least-squares objective function was first computed to retrieve the dispersion curves of the surface waves. Then, the fitting procedure between the data and a three-sedimentlayer forward model was carried out (to a depth of 7 m), using an improved version of the neighbourhood algorithm. The inversion results indicate a NE-SW fault, which is not visible at the surface. This was confirmed by a temperature survey conducted in 2010. A passive seismic experiment localized the ambient noise sources that correlate well with the areas of high CO2 flux and high soil temperatures. Finally, considering that the intrinsic attenuation is proportional to the frequency, a centroid analysis provides an overview of the attenuation of the seismic waves, which is closely linked to the petrophysical properties of the rock. These different approaches that merge complete active and passive seismic data with soil temperature and CO2 flux maps confirm the presence of the hydrothermal system plume. Some properties of the top of the plume are indicated and localized.
    Description: Published
    Description: 1725–1733
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Inverse theory ; Tomography ; Hydrothermal systems ; Europe ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-13
    Description: To gain a better insight of the hydrogeology and the location of the main tectonic faults of Stromboli volcano in Italy, we collected electrical resistivity measurements, soil CO2 concentrations, temperature and self-potential measurements along two profiles. These two profiles started at the village of Ginostra in the southwest part of the island. The first profile (4.8 km in length) ended up at the village of Scari in the north east part of the volcano and the second one (3.5 km in length) at Forgia Vecchia beach, in the eastern part of the island. These data were used to provide insights regarding the position of shallow aquifers and the extension of the hydrothermal system. This large-scale study is complemented by two high-resolution studies, one at the Pizzo area (near the active vents) and one at Rina Grande where flank collapse areas can be observed. The Pizzo corresponds to one of the main degassing structure of the hydrothermal system. The main degassing area is localized along a higher permeability area corresponding to the head of the gliding plane of the Rina Grande sector collapse. We found that the self-potential data reveal the position of an aquifer above the villages of Scari and San Vincenzo. We provide an estimate of the depth of this aquifer from these data. The lateral extension of the hydrothermal system (resistivity ∼15–60 ohm m) is broader than anticipated extending in the direction of the villages of Scari and San Vincenzo (in agreement with temperature data recorded in shallow wells). The lateral extension of the hydrothermal system reaches the lower third of the Rina Grande sector collapse area in the eastern part of the island. The hydrothermal body in this area is blocked by an old collapse boundary. This position of the hydrothermal body is consistent with low values of the magnetization (〈2.5 A m−1) from previously published work. The presence of the hydrothermal body below Rina Grande raises questions about the mechanical stability of this flank of the edifice.
    Description: INSU-CNRS, Laboratoire GeoSciences Reunion-IPGP, INGV, DOE (Energy Efficiency and Renewable Energy, Geothermal Technologies Program, awardDE-FG36–08GO018195)
    Description: Published
    Description: 1078-1094
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: Tomography. ; Electrical properties ; Hydrogeophysics ; Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...