ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The Campi Flegrei volcanic district (Naples region, Italy) is a 12-km-wide, restless caldera system that has erupted at least six voluminous ignimbrites during the late Pleistocene, including the [300 km3 Campanian ignimbrite (CI) which originated from the largest known volcanic event of the Mediterranean region. The Breccia Museo (BM), a petrologically heterogeneous and stratigraphically complex volcanic deposit extending over 200 km2 in close proximity to Campi Flegrei, has long remained contentious regarding its age and stratigraphic relation to the CI. Here, we present crystallization and eruption ages for BM plutonic ejecta clasts that were determined via uranium decay series and (U–Th)/He dating of zircon, respectively. Despite mineralogical and textural heterogeneity of these syenitic clasts, their U–Th zircon rim crystallization ages are indistinguishable with an average age of 49.7 ± 2.5 ka (2r errors; mean square of weighted deviates MSWD = 1.2; n = 34). A subset of these crystals was used to obtain disequilibrium-corrected (U–Th)/He zircon ages which average 41.7 ± 1.8 ka (probability of fit P = 0.54; n = 15). This age closely overlaps with published CI 40Ar/39Ar eruption ages (40.6 ± 0.1 ka) after recalibration to recently revised flux monitor ages. Concordant eruption ages for BM and CI agree with previous chemostratigraphic and paleomagnetic correlations, suggesting their origin from the same eruption. However, they are at variance with recalibrated 40Ar/39Ar ages which have BM postdate CI by 3 ± 1 ka. BM syenites show similar geochemical and Sr–Nd isotopical features of pre-caldera rocks erupted between 58 and 46 ka, but are distinctive from subsequent calderaforming magmas. Energy-constrained assimilation and fractional crystallization modeling of Nd–Sr isotopic data suggests that pre-caldera magmas formed a carapace of BM-type intrusions in a mid-crust magma chamber (C8 km depth) shielding the younger CI magma from contamination by Hercynian basement wall rocks. An *41–50 ka hiatus in crystallization ages implies rapid solidification of these pre-CI intrusions. This argues against protracted pre-eruptive storage of a large volume of CI magma at shallow crustal levels.
    Description: Published
    Description: 953
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Pleistocene ; Zircon ; Geochronology ; Tephra ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...