ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Geodetic measurements devoted to active tectonics studies are extensively carried out in Italy only since the early 2000s, the maximum effort in deploying the GPS networks in Italy dating back to about 2005, so that the observed deformations represent the instantaneous seismic cycle conditions in every area of the Italian region. If we assume a simple idealized seismic cycle model for earthquake recurrence, we can draw some tracks potentially useful in seismic hazard studies, concerning both the spatial mapping of hazardous areas and the time trend of active fault relaxation. We show how the background strain-rate (SR) estimated from GPS velocities in Italy and the comparison with seismicity have evidenced that larger earthquakes occur with higher probability in areas of lower SR, providing evidence that elastic energy accumulates in areas where faults are locked and SR is lower. In tectonically active areas, such as the Apennine subduction belt, SR lows and the knowledge of active faults can be used to identify areas more prone to release larger amount of energy with respect to adjacent zones characterized by higher SR. We have found and modeled an exponential decrease relationship between SR and the time elapsed since the last largest earthquake for normal and thrust faults in the Italian area and estimated the characteristic times of relaxation by a non-linear inversion showing that thrust events exhibit a characteristic time (~ 990 yr) about 3 times larger, and lower SR, than those with normal fault mechanism. Assuming standard rigidity and viscosity values we are able to infer an average recurrence time of about 600 yr for normal faults and about 2000 yr for thrust faults.
    Description: Unpublished
    Description: Trieste
    Description: open
    Keywords: seismic cycle ; earthquake occurrence ; geodetic strain rate ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We probe the feasibility of integrating GPS and Synthetic Aperture Radar deformation rates within the seismic hazard models of the central Apennines (Italy), exploiting data from over 100 GPS stations and the ~20- year long ERS and ENVISAT SAR image archive. We then use a kinematic finite element model to derive the long-term strain rates, as well as earthquake recurrence relations. In turn these are input to state-of-the-art probabilistic seismic hazard models, the output of which is validated statistically using data from the Italian national accelerometric and macroseismic intensity databases.
    Description: Published
    Description: 23-27
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: N/A or not JCR
    Description: restricted
    Keywords: Seismic Hazard ; InSAR ; Central apennines ; Ground deformation ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The contribution of space geodetic techniques to interseismic velocity estimation, and thus seismic hazard modelling, has been recognized since two decades and made possible in more recent years by the increased availability and accuracy of geodetic measurements. We present the preliminary results of a feasibility study performed within the CHARMING project (Constraining Seismic Hazard Models with InSAR and GPS), funded by the European Space Agency (ESA). For a 200 km x 200 km study area, covering the Abruzzi region (central Italy) we measure the mean surface deformation rates from Synthetic Aperture Radar and GPS, finding several local to regional deformation gradients consistent with the tectonic context. We then use a kinematic finite element model to derive the long-term strain rates, as well as earthquake recurrence relations. In turn these are input to state-of-the-art probabilistic seismic hazard models, the output of which is validated statistically using data from the Italian national accelerometric and macroseismic intensity databases.
    Description: Published
    Description: 373-377
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: N/A or not JCR
    Description: open
    Keywords: Seismic Hazard ; Central Apennines ; InSAR ; Interseismic ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...