ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: In this paper we achieve three goals: (1) We demonstrate that crack tips governed by friction laws, including slip weakening, rate- and state-dependent laws, and thermal pressurization of pore fluids, propagating at supershear speed have slip velocity functions with reduced high-frequency content compared to crack tips traveling at subshear speeds. This is demonstrated using a fully dynamic, spontaneous, three-dimensional earthquake model, in which we calculate fault slip velocity at nine points (locations) distributed along a quarter circle on the fault where the rupture is traveling at supershear speed in the inplane direction and subshear speed in the antiplane direction. This holds for a fault governed by the linear slip-weakening constitutive equation, by slip weakening with thermal pressurization of pore fluid, and by rate- and state-dependent laws with thermal pressurization. The same is also true even assuming a highly heterogeneous initial shear stress field on the fault. (2) Using isochrone theory, we derive a general expression for the spectral characteristics and geometric spreading of two pulses arising from supershear rupture, the well-known Mach wave, and a second lesser known pulse caused by rupture acceleration. (3) We demonstrate that the Mach cone amplification of high frequencies overwhelms the de-amplification of high-frequency content in the slip velocity functions in supershear ruptures. Consequently, when earthquake ruptures travel at supershear speed, a net enhancement of high-frequency radiation is expected, and the alleged ‘‘low’’ peak accelerations observed for the 2002 Denali and other large earthquakes are probably not caused by diminished high-frequency content in the slip velocity function, as has been speculated.
    Description: Published
    Description: B05304
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: supershear ruptures ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...