ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: We describe a stand-alone software utility named TREMOrEC, which carries out training and test of a Support Vector Machine (SVM) classifier. TREMOrEC is developed in Visual C++ and runs under Microsoft Windows operating systems. Ease of use and short time processing, along with the excellent performance of the SVM classifier, make this tool ideal for volcano monitoring. The development of TREMOrEC is motivated by the successful application of the SVM classifier to volcanic tremor data recorded at Mount Etna in 2001 [Masotti et al,. 2006]. In that application, spectrograms of volcanic tremor were divided according to their recording date into four classes associated with different states of activity, i.e., pre-eruptive, lava fountain, eruptive, or post-eruptive. During the training, SVM learned the a-priori classification. The classifier’s performance was then evaluated on test sets not considered for training. The classification results matched the actual class membership with less than 6% of error.
    Description: Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile (projects V4/02 and V4/03).
    Description: Published
    Description: Q04007
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic tremor ; Etna ; Support Vector Machine ; classification ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: States of volcanic activity at Mt Etna develop in well-defined regimes with variable duration from a few hours to several months. Changes in the regimes are usually concurrent with variations of the characteristics of volcanic tremor, which is continuously recorded as background seismic radiation. This strict relationship is useful for monitoring volcanic activity in any moment and in whatever condition.We investigated the development of tremor features and its relation to regimes of volcanic activity applying pattern classification techniques. We present results from supervised and unsupervised classification methods applied to 425 patterns of volcanic tremor recorded between 2001 July and August, when a volcano unrest occurred. Support Vector Machine (SVM) and multilayer perceptron (MLP) were used as pattern classifiers with supervised learning. For the SVM and MLP training, we considered four target classes, that is, pre-eruptive, lava fountains, eruptive and post-eruptive. Using a leave one out testing scheme, SVM reached a score of 94.8 per cent of patterns matching the actual class membership, whereas MLP achieved 81.9 per cent of matching patterns. The excellent results, in particular those obtained with SVM, confirmed the reproducibility of the a priori classification. Unsupervised classification was carried out using cluster analysis (CA) and self-organizing maps (SOM). The clusters identified in unsupervised classification formed well-defined regimes, which can be easily related to the four a priori classes aforementioned. Besides, CA found a further cluster concurrent with the climax of eruptive activity. Applying a proper colour-coding to the microclusters (the so-called best matching units) identified by SOM, it was visually possible to follow the development of the characteristics of the tremor data with time, highlighting transitional stages from a regime of volcanic activity to another one. We conclude that supervised and unsupervised classification methods can be conveniently implemented as complementary tools for an in-depth understanding of the relationships between tremor data and volcanic phenomena.
    Description: Published
    Description: 1132 - 1144
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: neural networks ; fuzzy logic ; persistance ; memory ; correlations ; clustering ; Volcano seismology ; Statistical seismology ; Volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A system for automatic recognition of different volcanic activity regimes based on supervised classification of volcanic tremor is proposed. Spectrograms are calculated from volcanic tremor time-series, separated into four classes, each assumed as representative of a different state of volcanic activity, i.e., pre-eruptive, eruptive, lava fountains, and post-eruptive. As classification features, the spectral profiles obtained by averaging each spectrogram along its rows are chosen. As supervised classification strategy, the Support Vector Machine (SVM) classifier is adopted. Evaluation of the system performance is carried out on volcanic tremor data recorded at Mt Etna during the eruptive episodes of July-August 2001. The leave-one-out classification accuracy achieved is of about 94%.
    Description: Published
    Description: 67-75
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Support Vector Machine ; automatic classification ; volcanic tremor ; Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...