ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (15)
  • [abr] 5'-D; type I iodothyronine 5'-deiodinase
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 173 (1990), S. 1143-1149 
    ISSN: 0006-291X
    Keywords: [abr] 5'-D; type I iodothyronine 5'-deiodinase ; [abr] BrAcT"4; N-bromoacetyl-L-thyroxine ; [abr] GSH-Px; glutathione peroxidase ; [abr] SDS-PAGE; sodium dodecyl sulfate-polyacrylamide gel ; [abr] T"3; 3,3',5-triiodothyronine ; [abr] T"4; L-thyroxine ; [abr] p27; 27 kDa substrate binding type I 5'-deiodinase subunit
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 173 (1990), S. 1143-1149 
    ISSN: 0006-291X
    Keywords: [abr] 5'-D; type I iodothyronine 5'-deiodinase ; [abr] BrAcT"4; N-bromoacetyl-L-thyroxine ; [abr] GSH-Px; glutathione peroxidase ; [abr] SDS-PAGE; sodium dodecyl sulfate-polyacrylamide gel ; [abr] T"3; 3,3',5-triiodothyronine ; [abr] T"4; L-thyroxine ; [abr] p27; 27 kDa substrate binding type I 5'-deiodinase subunit
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey on the fluids released by the volcanic/geothermal system of Methana was undertaken. Characterization of the gases was made on the basis of the chemical and isotopic (He and C) analysis of 14 samples. CO2 soil gas concentration and fluxes were measured on the whole peninsula at more than 100 sampling sites. 31 samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of aquifers. Anomalies referable to the geothermal system, besides at known thermal manifesta-tions, were also recognized at some anomalous degassing soil site and in some cold groundwater. These anomalies were always spatially correlated to the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated in about 0.2 kg s-1. Although this value is low compared to other volcanic systems, anomalous CO2 degassing at Methana may pose gas hazard problems. Such volcanic risk, although restricted to limited areas, cannot be neglected and further studies have to be undertaken for its better assessment
    Description: Published
    Description: 712-722
    Description: N/A or not JCR
    Description: open
    Keywords: soil gases ; CO2 fluxes ; gas hazard ; groundwater chemistry ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Volcanic and geothermal areas are one of the major natural sources of H2S to the atmosphere. Its environmental impact is often the main cause of the opposition to the development of geothermal energy exploitation programs. In this paper we analyze the air concentrations and dispersion pattern of naturally emitted H2S at the geothermal area of Sousaki (Corinthia, Greece). Measurements, made with a network of passive samplers, evidence a rapid decrease of concentration values away from the emission points. The fact that the decrease is more pronounced in the summer with respect to the winter indicates that it is not only due to a dilution effect, but also to redox reactions favoured by higher temperatures and intense sunlight typical of the summer period.
    Description: Published
    Description: 1723-1728
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Hydrogen sulphide ; Environmental impact of volcanic activity ; Gas hazard ; Passive samplers ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Volcanic and geothermal areas are one of the major natural sources of environmentally relevant gases to the atmosphere. Hydrogen sulphide (H2S) is a toxic gas, which is rather always present in geothermal fluids. Like carbon dioxide, being a gas that is denser than atmospheric air, it can accumulate in topographic depressions and enclosures sometimes reaching concentrations (500-1000 ppm) lethal to humans and animals. It has a characteristic odor of rotten eggs to which the human smell is very sensible (odor threshold as low as 10 ppb for very sensible persons). The south Aegean volcanic arc, which is related to the subduction of the African plate beneath the Eurasian plate, comprises many active or extinct volcanic centres. Most of them are characterised by the presence of fumarolic areas. The peculiarity and beauty of such manifestations attracts each year thousands of tourists many of which go very close to the emission vents. In the present study we measured the atmospheric concentrations and dispersion pattern of naturally emitted H2S at four fumarolic areas (Thiochoma – Sousaki, Fyriplaka – Milos. Nea Kameni – Santorini, Lakki plain – Nisyros). Measurements were made with a network of passive samplers positioned at about 1.5 m above the ground, which gave time-integrated values for periods ranging from days to weeks. Values ranged from 0.1 to 2050 ppb at Sousaki, from 0.8 to 33.8 ppb for Milos, from 0.1 to 5.1 ppb for Santorini and from 1.6 to 1240 ppb for Nisyros. At all the fumatolic areas concentrations decreased exponentially with increasing distances from the source. The highest values were recorded at distances of about 5-20 m from the fumarolic vents. The striking difference between the highest values measured at Sousaki and Nisyros with respect to Milos and Santorini depends on two main factors. The first factor is a higher H2S emission rate at the former two sites (stronger total gas emission and higher H2S concentrations). The second factor is the geomorphology of the same two sites that limits the gas exchange with the open atmosphere. In fact, while the fumarolic area of Sousaki is in a narrow ravine and that of Nisyros is within the calderic depression of the island, the fumarolic areas of Milos and Santorini are well exposed to free atmospheric circulation. Nevertheless also the highest measured concentrations, although disconfortable, does not have adverse effects on human health.
    Description: Published
    Description: Bari, Italy
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: Volcanic degassing ; Hydrogen sulphide ; passive samplers ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated at 19 t a-1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from –4.9 to –38.9 pmolCH4 h-1 g-1 but could sometimes reach extremely high values (–33,000 pmolCH4 h-1 g-1.). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.
    Description: Published
    Description: 97–107
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Sousaki ; accumulation chamber ; soil degassing ; hydrothermal systems ; methane output ; methanotrophic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Volcanic and geothermal areas are one of the major natural sources of sulphur gases to the atmosphere. Hydrogen sulphide (H2S) is a toxic gas mainly associated to geothermal systems while sulphur dioxide (SO2) is released in huge quantities from volcanoes characterized by open conduit activity. Apart from being one of the most impressive geodynamic expressions, volcanoes are also an important tourist attraction. During the summer season the number of tourists visiting the crateric areas each day is on average many tens at Stromboli, hundreds at Vulcano, Santorini and Nisyros and thousands at Etna. Touristic exploitation of active volcanic areas cannot exempt from warranting a reasonable security to the visiting persons. But while many risks in these areas have been since long time considered, gas hazard, a very subtle risk, is often disregarded. The atmospheric concentrations and dispersion pattern of naturally emitted SO2 were measured at three volcanoes of southern Italy (Etna, Vulcano and Stromboli) while that of H2S at four volcanic/geothermal areas of Greece (Sousaki, Milos, Santorini and Nisyros). Measurements were made with a network of passive samplers positioned at about 1.5 m above the ground, which gave time-integrated values for periods from few days to 1 month. Samplers were placed in zones of the volcanoes with high tourist frequentation. Measured concentrations and dispersion pattern depend on the strength of the source (craters, fumaroles), meteorological conditions and geomorphology of the area. At Etna, Vulcano, Stromboli and Nisyros measured concentrations reach values that are absolutely dangerous to people affected by bronchial asthma or lung diseases. But considering that these are average values over periods from few days up to one month, concentrations could have reached much higher peak values dangerous also to healthy people. The present study evidences a peculiar volcanic risk connected to the touristic exploitation of volcanic areas. Such risk is particularly enhanced at Etna where elderly and not perfectly healthy people can easily reach, with cableway and off-road vehicles, areas with dangerous SO2 concentrations.
    Description: Published
    Description: Bari, Italy
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: sulphur gases ; passive samplers ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The study area is a 130 km long fast spreading graben in Central Greece bordered by active faults. Its complex geodynamical setting includes the presence at depth of a subduction slab responsible for the recent (Quaternary) volcanic activity in the area which possibly represents the northward continuation of the South Aegean active volcanic arc. To the area belongs also the western termination of the North-Anatolian fault a tectonic lineament of regional importance. The high geothermal gradient of the area is evidenced by the presence of many thermal springs with temperatures from 19 to 82 °C, issuing along the normal faults bordering the graben. In the period 2004-2012 more than 60 gas and water samples have been collected and their chemical and isotopic analysis revealed a wide range of compositions. Going from west to east the gas composition changes (Fig. 1) from CH4- to CO2-dominated passing through mixed N2-CH4 and N2-CO2 compositions, while at the same time the He isotopic composition goes from typical crustal values (0.02 R/Ra) up to 0.87 R/Ra (corrected for air contamination), showing in the easternmost sites a small but significant mantle input (up to ~ 10%). Isotopic composition of CH4-C indicates a thermogenic origin for the CH4-rich samples (δ13C from -50 to -37 ‰) and hydrothermal origin for the remaining samples (〉 -25‰). Positive δ15N values (around +2 ‰) indicate a contribution of crustal derived nitrogen for the N2-rich samples. The most pristine values of δ13C(CO2) refer to the most CO2-rich samples. These values (~ -3 ‰) point to a mixed mantle-marine carbonate source. Lower δ13C values (-10 ÷ -5 ‰) of the other sites can be explained by loss of CO2 due to dissolution processes. Also temperature and salinity of the waters shows differences along the graben increasing from west to east (Fig. 2). Two main groups can be separated on the basis of the total dissolved salts (TDS). The first, represented by dilute waters (TDS 〈 500 mg/l), is found in the westernmost sites characterised by the presence of CH4-rich and mixed N2-CH4 gases. The remaining waters display higher salinities (TDS from 9 to 35 g/l) due to the mixing with high salinity waters. The water composition can be explained by mixing of two end-members, one with low salinity of meteoric origin and the other with high salinity of marine origin. The mixing can be evidenced in Fig. 2. Low salinity waters show low chloride contents and their light water isotope composition overlaps the field of the cold groundwaters of the area confirming their meteoric origin. High salinity waters are aligned along the mixing line between the cold groundwaters and the seawater confirming the contribution of marine component. Most of the water compositions in the triangular graph of Giggenbach fall in the field of the non equilibrated waters being therefore unsuitable for geothermometric estimations. Only the easternmost sites (Gialtra, Ilion and Edipsos) falling the field of the partially equilibrated waters yield estimated temperatures in the range 150-170 °C. Silica geothermometers confirm these estimations. This study revealed that the complex geodynamic setting of the area is clearly reflected in the wide compositional range of the gases collected in the area that evidence contributions from different end-members (atmosphere, crust, mantle and hydrothermal systems). Water chemistry can be explained mainly from the mixing of a meteoric low-salinity end-member with a high-salinity marine end-member partially modified by hydrothermal water-rock interactions. The highest estimated temperatures in the hydrothermal reservoirs are in the range 150-170 °C.
    Description: Published
    Description: Patras, Greece
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: gas geochemistry ; hydrothermal systems ; Helium isotopes ; Carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer Science+Business Media B.V.
    Publication Date: 2017-04-04
    Description: Like other geodynamically active areas, Greece is also affected by a large number of geogenic gas manifestations. These occur either in the form of point sources (fumaroles, mofettes, bubbling gases) or as diffuse soil gas emanations. Geogenic sources release huge amounts of gases, which, apart from having important influences on the global climate, could also have a strong impact on human health. Gases have both acute and chronic effects. Carbon dioxide (CO2) and hydrogen sulphide are the main gases responsible for acute mortality due to their asphyxiating and/or toxic properties. Methane instead represents a risk for its explosive properties. Gas hazards are often disregarded because in fatal episodes connected to geogenic gases, the cause of death is often not correctly identified. Due to the fact that geodynamically active areas can release geogenic gases for millions of years over wide areas, it is important to realistically estimate potential risks. The present work produced a first catalogue of the geogenic gas manifestations of the whole Greek territory including relevant literature data. A preliminary estimation of the correlated risk has been made for the time period of the last 20 years considering the whole population of Greece. In this period, at least two fatal episodes with a total of three victims are likely due to exposure to geogenic gases (specifically CO2). This would give a risk of 1.3 9 10-8 fatality from geogenic gas manifestations per annum. This value, although probably underestimated, is much lower than most other natural or anthropogenic risks.
    Description: Published
    Description: 1987–2004
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Greece ; gas chemistry ; gas manifestations ; Geogenic gas risk ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...