ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry  (2)
  • Q11
  • Astronomy
  • J24
  • 2005-2009  (4)
  • 2005  (4)
Collection
Keywords
Years
  • 2005-2009  (4)
Year
  • 1
    Publication Date: 2019-07-13
    Description: We presented Spitzer Infrared Spectrograph (IRS) observations of two objects of the Taurus population that show unambiguous signs of clea,ring in their inner disks. In one of the objects, DM Tau, the outer disk is truncated at 3 AU; this object is akin to another recently reported in Taurus, CoKu Tau/4, in that the inner disk region is free of small dust. Unlike CoKu Tau/4, however, this star is still accreting, so optically thin gas should still remain in the inner disk region. The other object, GM Aur, also accreting, has about 0.02 lunar masses of small dust in the inner disk region within about 5 AU, consistent with previous reports. However, the IRS spectrum clearly shows that the optically thick outer disk has an inner truncation at a much larger radius than previously suggested, of order 24 AU. These observations provide strong evidence for the presence of gaps in protoplanetary disks.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 630; 2; L185 - L188
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We presented the infrared spectrum of the young binary system St 34 obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. The IRS spectrum clearly shows excess dust emission, consistent with the suggestion of White & Hillenbrand that St 34 is accreting from a circumbinary disk. The disk emission of St 34 is low in comparison with the levels observed in typical T Tauri stars; silicate features at 10 and 20 microns are much weaker than typically seen in T Tauri stars; and excess emission is nearly absent at the shortest wavelengths observed. These features of the infrared spectrum suggest substantial grain growth (to eliminate silicate features) and possible settling of dust to the disk midplane (to reduce the continuum excess emission levels), along with a relatively evacuated inner disk, as expected due to gravitational perturbations by the binary system. Although the position of St 34 in the H-R diagram suggests an age of 8f Myr, assuming that it lies at the distance of the Taurus-Auriga molecular clouds, White & Hillenbrand could not detect any Li I absorption, which would indicate a Li depletion age of roughly 25 Myr or more. We suggest that St 34 is closer than the Taurus clouds by about 30-40 pc and has an age roughly consistent with Li depletion models. Such an advanced age would make St 34 the oldest known low-mass pre-main-sequence object with a dusty accretion disk. The persistence of optically thick dust emission well outside the binary orbit may indicate a failure to make giant planets that could effectively remove dust particles.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 628; 2; L147 - L150
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Site 1201D of Ocean Drilling Program Leg 195 recovered basaltic and volcaniclastic units from the West Philippine Basin that document the earliest history of the Izu–Bonin–Mariana convergent margin. The stratigraphic section recovered at Site 1201D includes 90 m of pillow basalts, representing the West Philippine Basin basement, overlain by 459 m of volcaniclastic turbidites that formed from detritus shed from the Eocene–Oligocene proto-Izu–Bonin–Mariana island arc. Basement basalts are normal mid-ocean ridge basalt (N-MORB), based on their abundances of immobile trace elements, although fluid-mobile elements are enriched, similar to back-arc basin basalts (BABB). Sr, Nd, Pb and Hf isotopic compositions of the basement basalts are similar to those of basalts from other West Philippine Basin locations, and show an overall Indian Ocean MORB signature, marked by high 208Pb/204Pb for a given 206Pb/204Pb and high 176Hf/177Hf for a given 143Nd/ 144Nd. Trace element and isotopic differences between the basement and overlying arc-derived volcaniclastics are best explained by the addition of subducted sediment or sediment melt, together with hydrous fluids from subducted oceanic crust, into the mantle source of the arc lavas. In contrast to tectonic models suggesting that a mantle hotspot was a source of heat for the early Izu–Bonin–Mariana arc magmatism, the geochemical data do not support an enriched, ocean island basalt (OIB)-like source for either the basement basalts or the arc volcanic section.
    Description: Published
    Description: 1-23
    Description: partially_open
    Keywords: Back-arc basalts ; Izu–Bonin–Marianas ; Philippine Sea ; Subduction initiation ; Ocean Drilling Program Leg 195 ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 480 bytes
    Format: 1776547 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Recent examinations of the chemical fluxes through convergent plate margins suggest the existence of significant mass imbalances for many key species: only 20–30% of the to-the-trench inventory of large-ion lithophile elements (LILE) can be accounted for by the magmatic outputs of volcanic arcs. Active serpentinite mud volcanism in the shallow forearc region of the Mariana convergent margin presents a unique opportunity to study a new outflux: the products of shallow-level exchanges between the upper mantle and slab-derived fluids. ODP Leg 125 recovered serpentinized harzburgites and dunites from three sites on the crests and flanks of the active Conical Seamount. These serpentinites have U-shaped rare earth element (REE) patterns, resembling those of boninites. U, Th, and the high field strength elements (HFSE) are highly depleted and vary in concentration by up to 2 orders of magnitude. The low U contents and positive Eu anomalies indicate that fluids from the subducting Pacific slab were probably reducing in nature. On the basis of substantial enrichments of fluid-mobile elements in serpentinized peridotites, we calculated very large slab inventory depletions of B (79%), Cs (32%), Li (18%), As (17%), and Sb (12%). Such highly enriched serpentinized peridotites dragged down to depths of arc magma generation may represent an unexplored reservoir that could help balance the input-output deficit of these elements as observed by Plank and Langmuir (1993, 1998) and others. Surprisingly, many species thought to be mobile in fluids, such as U, Ba, Rb, and to a lesser extent Sr and Pb, are not enriched in the rocks relative to the depleted mantle peridotites, and we estimate that only 1–2% of these elements leave the subducting slabs at depths of 10 to 40 km. Enrichments of these elements in volcanic front and behind-the-front arc lavas point to changes in slab fluid composition at greater depths.
    Description: Published
    Description: 1-24
    Description: partially_open
    Keywords: Serpentinite ; Ocean Drilling Program ; Forearc ; Mantle ; Marianas ; Subduction ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 462 bytes
    Format: 2257702 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...