ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: We report new data on water solubility in two melt compositions representative of volcanic units of the Campi Flegrei Caldera (Italy). The first composition is a primitive shoshonite and the second one is a more evolved latitic composition that have been chosen because of their less evolved nature compared to the other erupted products of Campi Flegrei. Water solubility was investigated at pressures from 25 to 200 MPa and 1200 °C following synthesis in an Internal Heated Pressure Vessel (IHPV). The glasses obtained from water-saturated experiments were analysed using both Fourier Transform Infra Red spectroscopy (FTIR) and Karl Fischer Titration (KFT). KFT was used as an independent method to obtain water concentration for the calibration of molar absorptivities of infrared bands at ∼3550 cm−1 (total water), ∼4500 cm−1 (hydroxyl groups) and ∼5200 cm−1 (molecular water). Water solubility in the shoshonitic melts is similar to that of a basalt while a slightly higher water solubility is observed for the latitic composition. As regards the speciation, we have investigated the water speciation for the shoshonitic composition only and we have made a comparison between the data resulting using different molar absorptivities obtained for basaltic compositions similar to our shoshonite.
    Description: Published
    Description: 113–124
    Description: reserved
    Keywords: Water solubility ; Shoshonitic melts ; Latitic melts ; FTIR ; Molar absorptivity ; Water speciation ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 387108 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A continuous-coring borehole recently drilled at Camaldoli dellaTorre on the southern slopes of Somma^Vesuvius provides constraints on the volcanic and magmatic history of the Vesuvian volcanic area since c. 126 ka BP. The cored sequence includes volcanic units, defined on stratigraphical, sedimentological, petrological and geochemical grounds, emitted from both local and distal vents. Some of these units are of known age, such as one Phlegraean pre-Campanian Ignimbrite, Campanian Ignimbrite (39 ka), Neapolitan Yellow Tuff (14 9ka) and Vesuvian Plinian deposits, which helps to constrain the relative age of the other units.The main rock types encountered are shoshonite, phonotephrite, latite, trachyte and phonolite. The sequence includes, from the base upwards: a thick succession of pyroclastic units emplaced between 126 and 39 ka, most of them attributed to eruptions that occurred in the Phlegraean area; the Campanian Ignimbrite; the products of a local tuff cone formed between 39 ka and the deposition of the products of the earliest activity of the Mt. Somma volcano; the products of the Somma^Vesuvius volcano, which include from the base upwards a thick sequence of lavas, pyroclastic rocks and the products of a local spattercone dated between 3 7ka and AD 79.The data obtained from the study of the borehole show that, before the Campanian Ignimbrite eruption, low-energy explosive volcanism took place in the Vesuvian area, whereas mostly high-energy explosive eruptions characterized the Campi Flegrei activity. In the Vesuvian area, Campanian Ignimbrite deposition was followed by the eruption of a local tuff cone and a long repose time, which predated the formation of the Mt. Somma edifice. Since 18 3 ka (Pomici di Base eruption) the activity of Somma^Vesuvius became mostly explosive with rare lava effusions.The shallowest cored deposits belong to the Camaldoli dellaTorre cone, formed between the Pomici di Avellino and Pomici di Pompei eruptions (3 7 ka^AD 79). Newgeochemical and Sr^Nd^Pb^ B-isotopic data on samples from the drilled core, together with those available from the literature, allow us to further distinguish the volcanic rocks as a function of both their provenance (i.e. Phlegraean or Vesuvian areas) and age, and to identify different magmatic processes acting through time in the Vesuvian mantle source(s) and during magma ascent towards the surface. Isotopically distinct magmas, rising from a mantle source variably contaminated by slab- derived components, stagnated at mid-crustal depths (8^10 km below sea level) where magmas differentiated and were probably contaminated. Contamination occurred either with Hercynian continental crust, mostly during the oldest stages of Vesuvian activity (from 39 to 16 ka), or with Mesozoic limestone, mostly during recent Vesuvian activity. Energy constrained assimilation and fractional crystallization (EC-AFC) modelling results show that contamina- tion with Hercynian crust probably occurred during differentiation from shoshonite to latite. Contamination with limestone, which is not well constrained with the available data, might have occurred only during the transition from shoshonite to tephrite. From the ‘deep’ reservoir, magmas rose towards a series of shallow reservoirs, in which they differentiated further, mixed, and fed volcanic activity.
    Description: Published
    Description: 753-784
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Somma^Vesuvius ; crustal contamination ; source heterogeneity ; radiogenic and stable isotopes ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Magmatic processes triggering eruptions at Campi Flegrei caldera (southern Italy) and their relationships with the widespread emissions of fluids and caldera unrest episodes, are poorly constrained. The 4.1 ka B.P. Agnano–Monte Spina eruption, the reference event for a future large-size explosive eruption at Campi Flegrei, was investigated to shed light, through melt inclusion and isotope analyses, on the geochemical processes operating in the plumbing system. Chemical and isotopic data on whole rocks and glasses suggest that at least two magma batches mixed during the course of the eruption. Melt inclusion data highlight the pre-eruption storage conditions of two magmatic end-members. One end-member is like the less differentiated (shoshonitic) Campi Flegrei erupted magma, while the other could be a residual of the Neapolitan Yellow Tuff magma. Mixing between these two components was driven by a large gas phase which sustained the ascent of magmas of deep provenance. The H2O and CO2 contents in pyroxene-hosted melt inclusions yield entrapment pressures between 107 and 211 MPa, corresponding to depths between 4 and 8 km. The degassing trends reveal two extreme patterns. One pattern, already documented in the literature, is the volatile signature of poorly differentiated magmas ascending from more than 8 km depth, while the other is related to a gas-dominated magma, flushed by a CO2-rich gas phase partly released from the deep reservoir. This study provides a conceptual frame for unrest phases at Campi Flegrei, such as the 1982–84 event. Uplift phases can be related to closed-system ascent of magmas and fluids from more than 8 km depth, and their emplacement at shallow levels. This leads the shallow system to store, and then progressively release, the accumulated gas. In this view, both unrest episodes and eruptions could be strongly influenced by both the achievement of a critical upper limit of gas storage in the shallow magmatic reservoir and the stress and fracturing state of the roof rocks. The present results help to constrain the preeruptive conditions expected at Campi Flegrei caldera in case of a future large-size eruptive event.
    Description: Published
    Description: 135–147
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Sr and Nd isotopes ; Melt inclusions ; Gas flushing ; Magma mixing ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...