ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-22
    Description: The huge loss of lives and the destruction caused by the 2004 Indian Ocean tsunami dramatically showed the need for a reassessment of tsunami hazard and risk in coastal regions prone to this threat. It is known that many countries facing the Mediterranean basin have been affected by several tsunamis in the past, some of which were catastrophic over large areas. Our work aims to quantitatively address the problem of the tsunami hazard and risk assessment by means of numerical simulation of earthquake-induced tsunami scenarios. The work is part of a larger project, funded by the Italian Department for Civil Defense, whose main goal is the evaluation of the seismogenic potential and of the probability of occurrence of strong earthquakes in Italy. Here we show some preliminary results concerning the analysis of several simulated tsunami scenarios. On the basis of tsunami catalogues and seismogenic source databases, we selected a set of tectonic sources that, owing to their location and/or size, are believed to be especially hazardous for the Italian coasts. Once the geometrical parameters of the fault are defined (on the basis of geological and seismological evidence and constraints), we compute the coseismic vertical displacement of the seafloor, which represents the initial condition of the tsunami propagation problem. Then we solve the propagation equations (the wide used shallow-water equations) through a finite difference technique. The main outputs of a single run are the wavefields at desired times, useful to estimate the arrival times of the wavefronts, and the maximum water elevation field that gives at-glance information on the tsunami energy focusing during the whole propagation. Furthermore, for those stretches of coast that are particularly vulnerable (owing to high population density, presence of important infrastructures, etc.) we make a more detailed analysis of the wave impact. Among the tectonic sources we studied, the 365 AD Crete earthquake indeed represents a serious threat for the Italian coastlines facing the Ionian Sea, where we estimated a wave height exceeding 1-2 meters along hundreds of km of the coast. Furthermore, the first wavefront from this source is expected to reach the coasts of southern Italy in less than 1 hour from the origin time of the parent earthquake. This finding stresses the need for an especially early warning by the geophysical monitoring systems and by the Civil Defense structures.
    Description: Convenzione INGV - DPC 2004-2006 Progetti Sismologici e Vulcanologici di interesse per il Dipartimento della Protezione Civile Progetto S2 - Valutazione del potenziale sismogenetico e probabilità dei forti terremoti in Italia
    Description: Published
    Description: Vienna, Austria
    Description: open
    Keywords: Tsunami hazard ; Risk assessment ; Seismogenic source ; Mediterranean Sea ; Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 3346130 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We calculated the impact on Southern Italy of a large set of tsunamis resulting from earthquakes generated by major fault zones of the Mediterranean Sea. Our approach merges updated knowledge on the regional tectonic setting and scenario-like calculations of expected tsunami impact. We selected three potential source zones located at short, intermediate and large distance from our target coastlines: the Southern Tyrrhenian thrust belt; the Tell-Atlas thrust belt; and the western Hellenic Arc. For each zone we determined a Maximum Credible Earthquake and described the geometry, kinematics and size of its associated Typical Fault. We then let the Typical Fault float along strike of its parent source zone and simulated all tsunamis it could trigger. Simulations are based on the solution of the nonlinear shallow water equations through a finite-difference technique. For each run we calculated the wave fields at desired simulation times and the maximum water elevation field, then produced travel-time maps and maximum wave-height profiles along the target coastlines. The results show a highly variable impact for tsunamis generated by the different source zones. For example, a large Hellenic Arc earthquake will produce a much higher tsunami wave (up to 5 m) than those of the other two source zones (up to 1.5 m). This implies that tsunami scenarios for Mediterranean Sea countries must necessarily be computed at the scale of the entire basin. Our work represents a pilot study for constructing a basin-wide tsunami scenario database to be used for tsunami hazard assessment and early warning.
    Description: Italian Civil Defense; Project “Development of new technologies for the protection of the Italian territory from natural hazards” funded by the Italian Ministry of University and Research
    Description: Published
    Description: B01301
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: JCR Journal
    Description: partially_open
    Keywords: Tsunamis ; Mediterranean Sea ; Seismotectonics ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We calculated the expected impact on the Italian coast of the Adriatic Sea of a large set of tsunamis resulting from potential earthquakes generated by major fault zones. Our approach merges updated knowledge on the regional tectonics and scenario-like calculations of expected tsunami impact. We selected six elongated potential source zones. For each of them we determined a Maximum Credible Earthquake and the associated Typical Fault, described by its size, geometry and kinematics. We then let the Typical Fault float along strike of its parent source zone and simulated all tsunamis it could generate. Simulations are based on the solution of the nonlinear shallow water equations through a finite-difference technique. For each run we calculated the wave fields at specified simulation times and the maximum water height field (above mean sea level), then generated travel-time maps and maximum wave height profiles along the target coastline. Maxima were also classified in a three-level code of expected tsunami threat. We found that the southern portion of Apulia facing Albania and the Gargano promontory are especially prone to the tsunami threat. We also found that some bathymetric features are crucial in determining the focalization-defocalization of tsunami energy. We suggest that our results be taken into account in the design of early-warning strategies.
    Description: INGV-DPC Project S2 “Assessing the seismogenic potential and the probability of strong earthquakes in Italy”
    Description: Published
    Description: 2117-2142
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: partially_open
    Keywords: tsunamis ; Adriatic Sea ; seismotectonics ; active faulting ; seismic hazard ; tsunami hazard ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present the realization of a fault-source data set designed to become the starting point in regional-scale tsunami hazard studies. Our approach focuses on the parametric fault characterization in terms of geometry, kinematics, and assessment of activity rates, and includes a systematic classification in six justification levels of epistemic uncertainty related with the existence and behaviour of fault sources. We set up a case study in the central Mediterranean Sea, an area at the intersection of the European, African, and Aegean plates, characterized by a complex and debated tectonic structure and where several tsunamis occurred in the past. Using tsunami scenarios of maximum wave height due to crustal earthquakes (Mw=7) and subduction earthquakes (Mw=7 and Mw=8), we illustrate first-order consequences of critical choices in addressing the seismogenic and tsunamigenic potentials of fault sources. Although tsunamis generated by Mw=8 earthquakes predictably affect the entire basin, the impact of tsunamis generated by Mw=7 earthquakes on either crustal or subduction fault sources can still be strong at many locales. Such scenarios show how the relative location/orientation of faults with respect to target coastlines coupled with bathymetric features suggest avoiding the preselection of fault sources without addressing their possible impact onto hazard analysis results.
    Description: This work was supported by the EC-Research Framework programme FP7, Seismic Hazard Harmonization in Europe, Grant Agreement No. 226769 and the Flagship Project RITMARE – The Italian Research for the Sea – coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University and Research within the National Research Program 2011–2013.
    Description: Published
    Description: 1025-1050
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: active fault ; tsunami ; tsunamigenic source ; earthquake ; PTHA ; hazard ; epistemic uncertainty ; tectonic moment rate ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...