ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 173 (1990), S. 1143-1149 
    ISSN: 0006-291X
    Keywords: [abr] 5'-D; type I iodothyronine 5'-deiodinase ; [abr] BrAcT"4; N-bromoacetyl-L-thyroxine ; [abr] GSH-Px; glutathione peroxidase ; [abr] SDS-PAGE; sodium dodecyl sulfate-polyacrylamide gel ; [abr] T"3; 3,3',5-triiodothyronine ; [abr] T"4; L-thyroxine ; [abr] p27; 27 kDa substrate binding type I 5'-deiodinase subunit
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 173 (1990), S. 1143-1149 
    ISSN: 0006-291X
    Keywords: [abr] 5'-D; type I iodothyronine 5'-deiodinase ; [abr] BrAcT"4; N-bromoacetyl-L-thyroxine ; [abr] GSH-Px; glutathione peroxidase ; [abr] SDS-PAGE; sodium dodecyl sulfate-polyacrylamide gel ; [abr] T"3; 3,3',5-triiodothyronine ; [abr] T"4; L-thyroxine ; [abr] p27; 27 kDa substrate binding type I 5'-deiodinase subunit
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey on the fluids released by the volcanic/geothermal system of Methana was undertaken. Characterization of the gases was made on the basis of the chemical and isotopic (He and C) analysis of 14 samples. CO2 soil gas concentration and fluxes were measured on the whole peninsula at more than 100 sampling sites. 31 samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of aquifers. Anomalies referable to the geothermal system, besides at known thermal manifesta-tions, were also recognized at some anomalous degassing soil site and in some cold groundwater. These anomalies were always spatially correlated to the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated in about 0.2 kg s-1. Although this value is low compared to other volcanic systems, anomalous CO2 degassing at Methana may pose gas hazard problems. Such volcanic risk, although restricted to limited areas, cannot be neglected and further studies have to be undertaken for its better assessment
    Description: Published
    Description: 712-722
    Description: N/A or not JCR
    Description: open
    Keywords: soil gases ; CO2 fluxes ; gas hazard ; groundwater chemistry ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A comprehensive hydrogeochemical study of the cold and thermal groundwaters of the presently quiescent volcanic system of Methana was undertaken collecting 59 natural water samples during the period 2004-2007. Methana is a peninsula whose climatology and hydrology can be compared to the nearby small islands of the Aegean Sea. Similarly the chemical and isotopic composition of its water is dominated by the mixing of seawater with meteoric water. But the simple mixing trend is modified by water-rock interaction processes, enhanced by the dissolution of endogenous CO2, leading to strong enrichments in Alkalinity, Calcium, Barium, Iron and Manganese.
    Description: Published
    Description: Athens, Greece
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Methana ; thermal waters ; groundwaters ; hydrochemistry ; stable isotopes ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Florina basin developed in the Pelagonian Zone, the westernmost zone of the Internal Hellenides, in response to NE–SW extension in the Late Miocene and to a subsequent Pleistocene episode of NW–SE extension. Continuous sedimentation resulted in the accumulation of a 560 m thick succession of Late Miocene to Early Pleistocene lake sediments with intercalated lignites and alluvial deposits. The presence of intercalated volcanic ash beds of Pliocene age evidences volcanic activity related to the exstensional tectonics. Groundwaters in the central part of the Florina plain display high levels of dissolved gases, which often separate in a free gas phase. Their composition is dominated by carbon dioxide, which accounts for 85-99% of these gases. Apart from small amounts of atmospheric gases, minor components are CH4 (0.05-0.4%) and He (3-30 ppm). Carbon isotopic composition ranging from –1.6 to 0.3‰ (vs. VPDB) testifies for a deep (magmatic-hydrothermal) origin of CO2 and also He isotopic composition (0.24-0.55 R/Ra) reveals a small (3.5-8.4%) but significant mantle contribution. Furthermore the water composition of a deep well (Mesochori) shows important contribution from a hydrothermal component, displaying very high Li and B contents and a clear isotopic shift on a δD-δ18O diagram. Geothermometric estimates of the deep reservoir are in the range 150-180 °C. The uprise of mantle gases is related to the main tectonic structures, which probably allowed also magma intrusion episodes whose heat flow sustain the deep hydrothermal system. Because of the huge input of CO2, the shallow groundwaters of the studied area become acidic and consequently strongly aggressive with respect to the host rocks. At the sampling point many waters display pH values down to 5.5, being generally under the lower limit for drinking waters. Intense rock leaching results in metal release to the solution and enhanced metal fluxes in the aqueous system. As such, magmatic-hydrothermal CO2 input produces a “natural pollution” of the aquifer, where maximum admissible concentrations (MAC) fixed by European Union for drinking waters are exceeded at least for Ni, Mn and Fe in most of the analysed samples. Measured values reach respectively up to 30, 1700 and 55000 µg/l (MACs 20, 50 and 200 µg/l). This natural contamination combines with the pollution due to agricultural practices in the Florina plain, which is responsible for elevated nitrate contents (up to 90 mg/l) often exceeding maximum admissible concentration (50 mg/l). The interaction of natural and anthropogenic contamination of the shallow groundwater resources in the Florina area leads to serious water quality issues.
    Description: Unpublished
    Description: Athens, Greece
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Greece ; Florina ; groundwater quality ; carbon dioxide ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-15
    Description: Like other geodynamically active areas also the Hellenic territory is affected by a large number of geogenic gas manifestations. These occur either in form of point sources (fumaroles, mofettes, bubbling gases) or as diffuse soil gas emanations. Geogenic sources release huge amounts of gases, which, apart from having important influences on the global climate, could have strong impact on human health. Gases have both acute and chronic effects. Carbon Dioxide and Hydrogen Sulphide are the main gases responsible for acute mortality due to their asphyxiating and/or toxic properties. Gas hazard is often disregarded because in fatal episodes connected to geogenic gases the death cause is often not correctly attributed. Due to the fact that geodynamic active areas can release geogenic gases for million years over wide areas, it is important not to underestimate potential risks. The present work produced a first catalogue of the geogenic gas manifestations of the whole Hellenic territory also considering literature data. Carbon dioxide dominated manifestations are the majority (61 out of 81). Most of them are found along the South Aegean Active Volcanic Arc. Many sites are also found in northern Greece and along the Sperchios basin - north Evia graben (central Greece) which are characterised by extensional tectonic activity. A preliminary estimation of the gas hazard has been made for the time period of the last 20 years considering the whole population of Greece. In this period at least two fatal episodes with a total of three victims could be certainly attributed to geogenic gases (specifically carbon dioxide). This would give a risk of 1.3 10-8 fatalities from geogenic gas manifestations per annum. Of course this risk is unevenly distributed along the whole Hellenic territory and it will depend on many factors. The most important factor will be the geographical distribution of the natural gas manifestations while also the strength of the source, the chemical composition of the gases, the meteorological conditions and the topography of the area will contribute to the determination of the local risk. The assessment of the geographical distribution of the risk levels is a difficult task, but the present catalogue of the gas manifestations of the natural gas manifestations of Greece will be a contribution to its determination. Since deaths due to natural gases are often wrongly attributed we cannot exclude that some fatal episode has not be recognized and thus that the risk is somewhat higher than that here assessed. Although very low this risk has not to be neglected, not only because possibly underestimated but also because simple countermeasures could be adopted. Dangerous area can be easily identified and delimited by geochemical prospections and their hazard properly evidenced.
    Description: Published
    Description: Kagoshima, Japan
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: carbon dioxide ; gas hazard ; Greece ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Gas and water samples were collected at CO2-rich wells in the plain of Florina (N. Greece). Chemical and isotopic composition of the analysed gases reveals their main crustal origin even if a small but significant contribution of mantle derived gases can be recognized. As a consequence of CO2 dissolution, HCO3- is always the main dissolved anion while cationic composition allows us to distinguish at least two main groups characterized by Na or Ca as dominant dissolved cations. The water-rock interaction is strongly enhanced by the dissolution of CO2 and the consequent lowering of pH. Such a process increases the mobility of some trace elements whose concentrations very often exceed UE drinking water limits. This study confirms that the Florina basin represents a good natural analogue of carbon storage systems and underscores the fact that possible deterioration of water quality due to CO2 leaks of the reservoirs must be carefully taken in account.
    Description: Published
    Description: 135-143
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: reserved
    Keywords: Groundwater ; Water quality ; carbon dioxide ; trace elements ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The studied area is a 130 km long fast spreading graben in Central Greece. Its complex geodynamical setting includes both the presence of a subduction slab at depth responsible for the recent (Quaternary) volcanic activity in the area and the western termination of a tectonic lineament of regional importance (the North-Anatolian fault). A high geothermal gradient is made evident by the presence of many thermal springs with temperatures from 19 to 82 C, that discharge along the normal faults bordering the graben. In the period 2004e2012, 58 gas and 69 water samples were collected and their chemical and isotopic analysis revealed a wide range of compositions. Two main groups of thermal waters can be distinguished on the basis of their chemical composition. The first, represented by dilute waters (E.C. 〈0.6 mS/cm) of the westernmost sites, is characterised by the presence of CH4-rich and mixed N2eCH4 gases. The second displays higher salinities (E.C. from 12 to 56 mS/cm) due to mixing with a modified marine component. Reservoir temperatures of 150e160 C were estimated with cationic geothermometers at the easternmost sites. Along the graben, from west to east, the gas composition changes from CH4- to CO2-dominated through mixed N2eCH4 and N2eCO2 compositions, while at the same time the He isotopic composition goes from typical crustal values (〈0.1 R/RA) up to 0.87 R/RA, showing in the easternmost sites a small (3e11%) but significant mantle input. The d13C values of the CO2-rich samples suggest a mixed origin (mantle and marine carbonates).
    Description: Published
    Description: 295-308
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Rift zone ; geothermal activity ; Helium isotopes ; Carbon isotopes ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-06
    Description: We report first data on chemical composition of the gas emitted by the geothermal system of Sousaki, Greece. Gas manifestations display typical geothermal gas composition with CO2 as the main component and CH4 and H2S as minor species. Soil gas composition derives from the mixing of two end-members (atmospheric air and geothermal gas). Soil CO2 fluxes range from〈2 to 33,400 g m 2 d 1. The estimated diffuse output of hydrothermal CO2, estimated for an area of 0.015 km2, is about 630 g s 1, while a tentative estimation of CH4 diffuse output gave a value of about 1.15 g s 1. Point sources accounted for lower flux values of 26 g s 1 of CO2, 0.1 g s 1 of CH4 and 0.02 g s 1 of H2S.
    Description: Published
    Description: L05307
    Description: JCR Journal
    Description: reserved
    Keywords: carbon dioxide ; methane emissions ; geothermal system, ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...