ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical Chemistry and Spectroscopy  (2)
  • *Signal Transduction  (1)
  • 1
    ISSN: 0935-6304
    Keywords: Capillary gas chromatography ; On-line extraction ; Large volume injection ; Hexachlorocyclohexanes ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0377-0486
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The Raman and infrared spectra of MgSO3·3H2O and of deuteriated and isotopically dilute samples of this hydrate were recorded from 100 to 4000 cm-1 at 90-300 K and analysed with regard to the bonding structure of the water of crystallization, the space group of this compound, i.e. P212121, Pnma or Pn21a, and assignment and coupling (with the H2O and D2O librations) of the internal modes of the sulphite ions. The orientational behaviour of single crystal Raman studies on isotopically dilute samples are firstly used for assigning the uncoupled OH (OD) stretching modes to the H positions in the lattice. From the three types of water of crystallization (in the case of space group P212121 or Pn21a), the orientationally disordered H2O1 and H2O11 are involved in very strong hydrogen bonds, uncoupled OH (OD) modes 3027 (2282) and 2930 (2240) cm-1, caused by the strong hydrogen bond acceptor strength of the sulphite ions. Both water molecules are extremely distorted with OH (OD) mode splittings up to 393 (218) cm-1, the largest known so far. H2O111 forms weak bifurcated hydrogen bonds. Both the stretching and bending vibrations of the sulphite ions coincide with rotational modes of the water molecules.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-15
    Description: The formation of a complex nervous system requires the intricate interaction of neurons and glial cells. Glial cells generally migrate over long distances before they initiate their differentiation, which leads to wrapping and insulation of axonal processes. The molecular pathways coordinating the switch from glial migration to glial differentiation are largely unknown. Here we demonstrate that, within the Drosophila eye imaginal disc, fibroblast growth factor (FGF) signalling coordinates glial proliferation, migration and subsequent axonal wrapping. Glial differentiation in the Drosophila eye disc requires a succession from glia-glia interaction to glia-neuron interaction. The neuronal component of the fly eye develops in the peripheral nervous system within the eye-antennal imaginal disc, whereas glial cells originate from a pool of central-nervous-system-derived progenitors and migrate onto the eye imaginal disc. Initially, glial-derived Pyramus, an FGF8-like ligand, modulates glial cell number and motility. A switch to neuronally expressed Thisbe, a second FGF8-like ligand, then induces glial differentiation. This switch is accompanied by an alteration in the intracellular signalling pathway through which the FGF receptor channels information into the cell. Our findings reveal how a switch from glia-glia interactions to glia-neuron interactions can trigger formation of glial membrane around axonal trajectories. These results disclose an evolutionarily conserved control mechanism of axonal wrapping, indicating that Drosophila might serve as a model to understand glial disorders in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franzdottir, Sigridur Rut -- Engelen, Daniel -- Yuva-Aydemir, Yeliz -- Schmidt, Imke -- Aho, Annukka -- Klambt, Christian -- England -- Nature. 2009 Aug 6;460(7256):758-61. doi: 10.1038/nature08167. Epub 2009 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Neurobiologie, Universitat Munster, Badestr. 9, D-48149 Munster, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19597479" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; *Cell Differentiation ; Cell Movement ; Cell Proliferation ; Drosophila Proteins/metabolism ; Drosophila melanogaster/cytology/genetics/growth & development/*metabolism ; Eye/*cytology/growth & development/innervation/metabolism ; Fibroblast Growth Factors/*metabolism ; Guinea Pigs ; Ligands ; Neuroglia/*cytology/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...