ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Signal Transduction  (4)
  • American Association for the Advancement of Science (AAAS)  (4)
  • 1
    Publication Date: 1997-10-23
    Description: A mechanism by which members of the ciliary neurotrophic factor (CNTF)-leukemia inhibitory factor cytokine family regulate gliogenesis in the developing mammalian central nervous system was characterized. Activation of the CNTF receptor promoted differentiation of cerebral cortical precursor cells into astrocytes and inhibited differentiation of cortical precursors along a neuronal lineage. Although CNTF stimulated both the Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Ras-mitogen-activated protein kinase signaling pathways in cortical precursor cells, the JAK-STAT signaling pathway selectively enhanced differentiation of these precursors along a glial lineage. These findings suggest that cytokine activation of the JAK-STAT signaling pathway may be a mechanism by which cell fate is controlled during mammalian development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonni, A -- Sun, Y -- Nadal-Vicens, M -- Bhatt, A -- Frank, D A -- Rozovsky, I -- Stahl, N -- Yancopoulos, G D -- Greenberg, M E -- NIHP30-HD 18655/HD/NICHD NIH HHS/ -- R01 CA43855/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 17;278(5337):477-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9334309" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Astrocytes/*cytology/drug effects/metabolism ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cells, Cultured ; Cerebral Cortex/*cytology/embryology ; Ciliary Neurotrophic Factor ; Cytokine Receptor gp130 ; DNA-Binding Proteins/*metabolism ; Dimerization ; Glial Fibrillary Acidic Protein/biosynthesis ; Growth Inhibitors/metabolism/pharmacology ; *Interleukin-6 ; Janus Kinase 1 ; Leukemia Inhibitory Factor ; Leukemia Inhibitory Factor Receptor alpha Subunit ; Lymphokines/metabolism/pharmacology ; Membrane Glycoproteins/metabolism ; Nerve Growth Factors/pharmacology ; Nerve Tissue Proteins/metabolism/pharmacology ; Platelet-Derived Growth Factor/pharmacology ; Protein-Tyrosine Kinases/*metabolism ; Rats ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cytokine/metabolism ; Receptors, Nerve Growth Factor/metabolism ; Receptors, OSM-LIF ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; *Signal Transduction ; Stem Cells/cytology ; Trans-Activators/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, Rudiger -- Stahl, Yvonne -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):773-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Genetik, Heinrich Heine Universitat, 40225 Dusseldorf, Germany. ruediger.simon@uni-duesseldorf.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902118" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Arabidopsis/cytology ; Arabidopsis Proteins/*chemistry/metabolism ; Asteraceae/cytology ; *Cell Communication ; *Cell Differentiation ; Cells, Cultured ; Meristem/*cytology ; Oligopeptides/chemistry/isolation & purification/*metabolism ; Plant Leaves/cytology ; Plant Roots/cytology ; Plant Shoots/cytology ; Plant Structures/cytology ; *Signal Transduction ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-03-03
    Description: Many members of the cytokine receptor superfamily initiate intracellular signaling by activating members of the Jak family of tyrosine kinases. Activation of the same Jaks by multiple cytokines raises the question of how these cytokines activate distinct intracellular signaling pathways. Selection of particular substrates--the transcriptional activator Stat3 and protein tyrosine phosphatase PTP1D--that characterize responses to the ciliary neurotrophic factor-interleukin-6 cytokine family depended not on which Jak was activated, but was instead determined by specific tyrosine-based motifs in the receptor components--gp130 and LIFR--shared by these cytokines. Further, these tyrosine-based motifs were modular, because addition of a Stat3-specifying motif to another cytokine receptor, that for erythropoietin, caused it to activate Stat3 in a ligand-dependent fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stahl, N -- Farruggella, T J -- Boulton, T G -- Zhong, Z -- Darnell, J E Jr -- Yancopoulos, G D -- New York, N.Y. -- Science. 1995 Mar 3;267(5202):1349-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7871433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Antigens, CD ; Cell Line ; Cytokine Receptor gp130 ; DNA-Binding Proteins/*metabolism ; *Growth Inhibitors ; Interleukin-6/pharmacology ; Intracellular Signaling Peptides and Proteins ; Leukemia Inhibitory Factor ; *Lymphokines ; Membrane Glycoproteins/chemistry/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Point Mutation ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/metabolism ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Cytokine/chemistry/*metabolism ; Receptors, OSM-LIF ; Recombinant Fusion Proteins/metabolism ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-06-18
    Description: The ciliary neurotrophic factor (CNTF) receptor complex is shown here to include the CNTF binding protein (CNTFR alpha) as well as the components of the leukemia inhibitory factor (LIF) receptor, LIFR beta (the LIF binding protein) and gp130 [the signal transducer of interleukin-6 (IL-6)]. Thus, the conversion of a bipartite LIF receptor into a tripartite CNTF receptor apparently occurs by the addition of the specificity-conferring element CNTFR alpha. Both CNTF and LIF trigger the association of initially separate receptor components, which in turn results in tyrosine phosphorylation of receptor subunits. Unlike the IL-6 receptor complex in which homodimerization of gp130 appears to be critical for signal initiation, signaling by the CNTF and LIF receptor complexes depends on the heterodimerization of gp130 with LIFR beta. Ligand-induced dimerization of signal-transducing receptor components, also seen with receptor tyrosine kinases, may provide a general mechanism for the transmission of a signal across the cell membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Aldrich, T H -- Stahl, N -- Pan, L -- Taga, T -- Kishimoto, T -- Ip, N Y -- Yancopoulos, G D -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1805-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8390097" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, CD ; Cell Line ; Cytokine Receptor gp130 ; Growth Inhibitors/pharmacology ; Interleukin-6/pharmacology ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Macromolecular Substances ; Membrane Glycoproteins/chemistry/*metabolism ; Models, Biological ; Nerve Growth Factors ; Nerve Tissue Proteins/pharmacology ; Phosphorylation ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cell Surface/chemistry/*metabolism ; *Receptors, Cytokine ; Receptors, Immunologic/chemistry/*metabolism ; Receptors, Interleukin-6 ; Receptors, OSM-LIF ; *Signal Transduction ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...