ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Signal Transduction  (1)
  • Nature Publishing Group (NPG)  (1)
  • Oxford University Press
  • American Chemical Society (ACS)
  • 2010-2014  (1)
  • 2000-2004
Collection
Publisher
  • Nature Publishing Group (NPG)  (1)
  • Oxford University Press
  • American Chemical Society (ACS)
Years
  • 2010-2014  (1)
  • 2000-2004
Year
  • 1
    Publication Date: 2014-12-18
    Description: Interventions that delay ageing mobilize mechanisms that protect and repair cellular components, but it is unknown how these interventions might slow the functional decline of extracellular matrices, which are also damaged during ageing. Reduced insulin/IGF-1 signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile Caenorhabditis elegans also allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that withstands harsh conditions. It has been suggested that rIIS delays C. elegans ageing through activation of dauer-related processes during adulthood, but some rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits. Here we show that rIIS can promote C. elegans longevity through a program that is genetically distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) orthologue SKN-1 acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in longevity, but is rendered dispensable for rIIS lifespan extension by even mild activity of dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, SKN-1 most prominently increases expression of collagens and other extracellular matrix genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-related decline in collagen expression. These collagens mediate adulthood extracellular matrix remodelling, and are needed for ageing to be delayed by interventions that do not involve dauer traits. By genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation of processes of general importance for longevity. The importance of collagen production in diverse anti-ageing interventions implies that extracellular matrix remodelling is a generally essential signature of longevity assurance, and that agents promoting extracellular matrix youthfulness may have systemic benefit.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352135/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352135/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ewald, Collin Y -- Landis, Jess N -- Porter Abate, Jess -- Murphy, Coleen T -- Blackwell, T Keith -- 5T32DK007260/DK/NIDDK NIH HHS/ -- GM062891/GM/NIGMS NIH HHS/ -- P30 DK036836/DK/NIDDK NIH HHS/ -- P30DK036836/DK/NIDDK NIH HHS/ -- R01 GM062891/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 5;519(7541):97-101. doi: 10.1038/nature14021. Epub 2014 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA [2] Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA [3] Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA. ; Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, 148 Carl Icahn Laboratory, Washington Road, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517099" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/physiology ; Animals ; Caenorhabditis elegans/growth & development/*metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Collagen/biosynthesis/genetics/*metabolism ; DNA-Binding Proteins/*metabolism ; Extracellular Matrix/metabolism ; Forkhead Transcription Factors ; Insulin/*metabolism ; Insulin-Like Growth Factor I/*metabolism ; Larva/growth & development ; Longevity/*physiology ; *Signal Transduction ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...