ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (6)
  • *Saccharomyces cerevisiae Proteins  (4)
  • American Association for the Advancement of Science (AAAS)  (10)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (10)
  • 1
    Publication Date: 1999-07-27
    Description: Genetic selections were used to find peptides that inhibit biological pathways in budding yeast. The peptides were presented inside cells as peptamers, surface loops on a highly expressed and biologically inert carrier protein, a catalytically inactive derivative of staphylococcal nuclease. Peptamers that inhibited the pheromone signaling pathway, transcriptional silencing, and the spindle checkpoint were isolated. Putative targets for the inhibitors were identified by a combination of two-hybrid analysis and genetic dissection of the target pathways. This analysis identified Ydr517w as a component of the spindle checkpoint and reinforced earlier indications that Ste50 has both positive and negative roles in pheromone signaling. Analysis of transcript arrays showed that the peptamers were highly specific in their effects, which suggests that they may be useful reagents in organisms that lack sophisticated genetics as well as for identifying components of existing biological pathways that are potential targets for drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norman, T C -- Smith, D L -- Sorger, P K -- Drees, B L -- O'Rourke, S M -- Hughes, T R -- Roberts, C J -- Friend, S H -- Fields, S -- Murray, A W -- P41-RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):591-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, CA 94143-0444, USA. tnorman@microbia.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417390" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Fungal Proteins/metabolism ; G1 Phase ; Galactose/metabolism ; Lipoproteins/metabolism ; Micrococcal Nuclease ; Mitosis ; Molecular Sequence Data ; Peptide Library ; Peptides/genetics/metabolism/*pharmacology ; Pheromones/*metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases ; Protein-Tyrosine Kinases ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; *Selection, Genetic ; *Signal Transduction ; Spindle Apparatus/drug effects/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-02-05
    Description: Genome-wide transcript profiling was used to monitor signal transduction during yeast pheromone response. Genetic manipulations allowed analysis of changes in gene expression underlying pheromone signaling, cell cycle control, and polarized morphogenesis. A two-dimensional hierarchical clustered matrix, covering 383 of the most highly regulated genes, was constructed from 46 diverse experimental conditions. Diagnostic subsets of coexpressed genes reflected signaling activity, cross talk, and overlap of multiple mitogen-activated protein kinase (MAPK) pathways. Analysis of the profiles specified by two different MAPKs-Fus3p and Kss1p-revealed functional overlap of the filamentous growth and mating responses. Global transcript analysis reflects biological responses associated with the activation and perturbation of signal transduction pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, C J -- Nelson, B -- Marton, M J -- Stoughton, R -- Meyer, M R -- Bennett, H A -- He, Y D -- Dai, H -- Walker, W L -- Hughes, T R -- Tyers, M -- Boone, C -- Friend, S H -- New York, N.Y. -- Science. 2000 Feb 4;287(5454):873-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosetta Inpharmatics, 12040 115th Avenue Northeast, Kirkland, WA 98034, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10657304" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Cycle Proteins ; Cyclin-Dependent Kinase Inhibitor Proteins ; Fungal Proteins/genetics/metabolism/physiology ; G1 Phase ; *Gene Expression Profiling ; *Gene Expression Regulation, Fungal ; Genome, Fungal ; Lipoproteins/pharmacology/physiology ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/metabolism ; Multigene Family ; Oligonucleotide Array Sequence Analysis ; Peptides/pharmacology/physiology ; Pheromones ; Protein Kinase C/metabolism ; *Repressor Proteins ; Saccharomyces cerevisiae/cytology/*genetics/growth & development/physiology ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-07-26
    Description: The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen-Hughes, T -- Utley, R T -- Cote, J -- Peterson, C L -- Workman, J L -- GM47867/GM/NIGMS NIH HHS/ -- R01 GM049650/GM/NIGMS NIH HHS/ -- R37 GM049650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802-4500, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; DNA, Fungal/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; Fungal Proteins/*metabolism ; Histones/metabolism ; Molecular Sequence Data ; *Nuclear Proteins ; Nucleosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-27
    Description: The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in approximately 3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lalueza-Fox, Carles -- Rompler, Holger -- Caramelli, David -- Staubert, Claudia -- Catalano, Giulio -- Hughes, David -- Rohland, Nadin -- Pilli, Elena -- Longo, Laura -- Condemi, Silvana -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Stoneking, Mark -- Schoneberg, Torsten -- Bertranpetit, Jaume -- Hofreiter, Michael -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1453-5. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Biologia Animal, Universitat de Barcelona, Spain. clalueza@ub.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962522" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Biological Evolution ; Cell Line ; DNA/genetics ; *Fossils ; Hair Color/*genetics ; Hominidae/*genetics ; Humans ; Molecular Sequence Data ; *Mutation ; Polymerase Chain Reaction ; Receptor, Melanocortin, Type 1/chemistry/*genetics/metabolism ; Sequence Analysis, DNA ; Skin Pigmentation/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-08-20
    Description: The extensive somatic diversification of immune receptors is a hallmark of higher vertebrates. However, whether molecular diversity contributes to immune protection in invertebrates is unknown. We present evidence that Drosophila immune-competent cells have the potential to express more than 18,000 isoforms of the immunoglobulin (Ig)-superfamily receptor Down syndrome cell adhesion molecule (Dscam). Secreted protein isoforms of Dscam were detected in the hemolymph, and hemocyte-specific loss of Dscam impaired the efficiency of phagocytic uptake of bacteria, possibly due to reduced bacterial binding. Importantly, the molecular diversity of Dscam transcripts generated through a mechanism of alternative splicing is highly conserved across major insect orders, suggesting an unsuspected molecular complexity of the innate immune system of insects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watson, Fiona L -- Puttmann-Holgado, Roland -- Thomas, Franziska -- Lamar, David L -- Hughes, Michael -- Kondo, Masahiro -- Rebel, Vivienne I -- Schmucker, Dietmar -- 1RO1-NS46747-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1874-8. Epub 2005 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana Farber Cancer Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16109846" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Brain/metabolism ; Cell Adhesion Molecules ; Cell Line ; Drosophila Proteins/chemistry/*genetics/*immunology/metabolism ; Drosophila melanogaster/*genetics/*immunology/metabolism ; Escherichia coli/immunology/metabolism ; Fat Body/metabolism ; Hemocytes/immunology/*metabolism ; Hemolymph/chemistry ; Immunity, Innate ; Immunoglobulins/chemistry ; Insects/chemistry/genetics ; Molecular Sequence Data ; Neurons/metabolism ; Oligonucleotide Array Sequence Analysis ; Phagocytosis ; Protein Isoforms/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; RNA Interference ; Receptors, Immunologic/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-04-02
    Description: The giant sarcomeric protein titin contains a protein kinase domain (TK) ideally positioned to sense mechanical load. We identified a signaling complex where TK interacts with the zinc-finger protein nbr1 through a mechanically inducible conformation. Nbr1 targets the ubiquitin-associated p62/SQSTM1 to sarcomeres, and p62 in turn interacts with MuRF2, a muscle-specific RING-B-box E3 ligase and ligand of the transactivation domain of the serum response transcription factor (SRF). Nuclear translocation of MuRF2 was induced by mechanical inactivity and caused reduction of nuclear SRF and repression of transcription. A human mutation in the titin protein kinase domain causes hereditary muscle disease by disrupting this pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lange, Stephan -- Xiang, Fengqing -- Yakovenko, Andrey -- Vihola, Anna -- Hackman, Peter -- Rostkova, Elena -- Kristensen, Jakob -- Brandmeier, Birgit -- Franzen, Gereon -- Hedberg, Birgitta -- Gunnarsson, Lars Gunnar -- Hughes, Simon M -- Marchand, Sylvie -- Sejersen, Thomas -- Richard, Isabelle -- Edstrom, Lars -- Ehler, Elisabeth -- Udd, Bjarne -- Gautel, Mathias -- G0200496(63216)/Medical Research Council/United Kingdom -- G0300213/Medical Research Council/United Kingdom -- PG/03/049/15364/British Heart Foundation/United Kingdom -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1599-603. Epub 2005 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Muscle Signalling and Development, Randall Division, King's College London, London SE1 1UL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802564" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Catalytic Domain ; Cell Line ; Cell Nucleus/metabolism ; Connectin ; *Gene Expression Regulation ; Heat-Shock Proteins/metabolism ; Humans ; Ligands ; Mice ; Mice, Inbred C3H ; Molecular Sequence Data ; Muscle Proteins/*chemistry/genetics/*metabolism ; Muscle, Skeletal/*metabolism ; Muscular Diseases/genetics ; Mutation ; Myocytes, Cardiac/*metabolism ; Protein Binding ; Protein Conformation ; Protein Kinases/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Rats ; Respiratory Insufficiency/genetics/metabolism ; Sarcomeres/metabolism ; Serum Response Factor/metabolism ; Signal Transduction ; Two-Hybrid System Techniques ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-10-11
    Description: The CDC13 gene has previously been implicated in the maintenance of telomere integrity in Saccharomyces cerevisiae. With the use of two classes of mutations, here it is shown that CDC13 has two discrete roles at the telomere. The cdc13-2est mutation perturbs a function required in vivo for telomerase regulation but not in vitro for enzyme activity, whereas cdc13-1ts defines a separate essential role at the telomere. In vitro, purified Cdc13p binds to single-strand yeast telomeric DNA. Therefore, Cdc13p is a telomere-binding protein required to protect the telomere and mediate access of telomerase to the chromosomal terminus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nugent, C I -- Hughes, T R -- Lue, N F -- Lundblad, V -- New York, N.Y. -- Science. 1996 Oct 11;274(5285):249-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics and Cell and Molecular Biology Program, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8824190" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Cloning, Molecular ; Cyclin B ; Cyclins/genetics/*metabolism ; DNA, Fungal/metabolism ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/*metabolism ; Fungal Proteins/genetics ; Genes, Fungal ; Molecular Sequence Data ; Mutation ; Phenotype ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Telomerase/genetics/*metabolism ; Telomere/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-07-29
    Description: Rasmussen's encephalitis is a progressive childhood disease of unknown cause characterized by severe epilepsy, hemiplegia, dementia, and inflammation of the brain. During efforts to raise antibodies to recombinant glutamate receptors (GluRs), behaviors typical of seizures and histopathologic features mimicking Rasmussen's encephalitis were found in two rabbits immunized with GluR3 protein. A correlation was found between the presence of Rasmussen's encephalitis and serum antibodies to GluR3 detected by protein immunoblot analysis and by immunoreactivity to transfected cells expressing GluR3. Repeated plasma exchanges in one seriously ill child transiently reduced serum titers of GluR3 antibodies, decreased seizure frequency, and improved neurologic function. Thus, GluR3 is an autoantigen in Rasmussen's encephalitis, and an autoimmune process may underlie this disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rogers, S W -- Andrews, P I -- Gahring, L C -- Whisenand, T -- Cauley, K -- Crain, B -- Hughes, T E -- Heinemann, S F -- McNamara, J O -- NS17771/NS/NINDS NIH HHS/ -- NS28709/NS/NINDS NIH HHS/ -- NS30990R29/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Jul 29;265(5172):648-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salt Lake City Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center, UT.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8036512" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Specificity ; Autoantibodies/blood/*immunology ; Brain/pathology ; Cell Line ; Child ; Disease Models, Animal ; Encephalitis/complications/*immunology/pathology/therapy ; Female ; Humans ; Male ; Plasma Exchange ; Rabbits ; Receptors, Glutamate/*immunology ; Recombinant Fusion Proteins/immunology ; Seizures/etiology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-08-08
    Description: Posttranslational modifications play key roles in regulating chromatin plasticity. Although various chromatin-remodeling enzymes have been described that respond to specific histone modifications, little is known about the role of poly[adenosine 5'-diphosphate (ADP)-ribose] in chromatin remodeling. Here, we identify a chromatin-remodeling enzyme, ALC1 (Amplified in Liver Cancer 1, also known as CHD1L), that interacts with poly(ADP-ribose) and catalyzes PARP1-stimulated nucleosome sliding. Our results define ALC1 as a DNA damage-response protein whose role in this process is sustained by its association with known DNA repair factors and its rapid poly(ADP-ribose)-dependent recruitment to DNA damage sites. Furthermore, we show that depletion or overexpression of ALC1 results in sensitivity to DNA-damaging agents. Collectively, these results provide new insights into the mechanisms by which poly(ADP-ribose) regulates DNA repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443743/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443743/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahel, Dragana -- Horejsi, Zuzana -- Wiechens, Nicola -- Polo, Sophie E -- Garcia-Wilson, Elisa -- Ahel, Ivan -- Flynn, Helen -- Skehel, Mark -- West, Stephen C -- Jackson, Stephen P -- Owen-Hughes, Tom -- Boulton, Simon J -- 064414/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- A3549/Cancer Research UK/United Kingdom -- A5290/Cancer Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Department of Health/United Kingdom -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1240-3. doi: 10.1126/science.1177321. Epub 2009 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, Clare Hall, London Research Institute, South Mimms EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661379" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Cell Line ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; DNA Damage ; DNA Helicases/chemistry/genetics/*metabolism ; *DNA Repair ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Humans ; Hydrogen Peroxide/pharmacology ; Immunoprecipitation ; Kinetics ; Mutant Proteins/chemistry/metabolism ; Nucleosomes/metabolism ; Phleomycins/pharmacology ; Poly Adenosine Diphosphate Ribose/*metabolism ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases/metabolism ; Protein Structure, Tertiary ; Radiation, Ionizing ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-12-23
    Description: Hypocalcemic vitamin D-resistant rickets is a human genetic disease resulting from target organ resistance to the action of 1,25-dihydroxyvitamin D3. Two families with affected children homozygous for this autosomal recessive disorder were studied for abnormalities in the intracellular vitamin D receptor (VDR) and its gene. Although the receptor displays normal binding of 1,25-dihydroxyvitamin D3 hormone, VDR from affected family members has a decreased affinity for DNA. Genomic DNA isolated from these families was subjected to oligonucleotide-primed DNA amplification, and each of the nine exons encoding the receptor protein was sequenced for a genetic mutation. In each family, a different single nucleotide mutation was found in the DNA binding domain of the protein; one family near the tip of the first zinc finger (Gly----Asp) and one at the tip of the second zinc finger (Arg----Gly). The mutant residues were created in vitro by oligonucleotide directed point mutagenesis of wild-type VDR complementary DNA and this cDNA was transfected into COS-1 cells. The produced protein is biochemically indistinguishable from the receptor isolated from patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, M R -- Malloy, P J -- Kieback, D G -- Kesterson, R A -- Pike, J W -- Feldman, D -- O'Malley, B W -- New York, N.Y. -- Science. 1988 Dec 23;242(4886):1702-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2849209" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcitriol/metabolism ; Cell Line ; Cell Line, Transformed ; Codon ; DNA/genetics/metabolism ; Exons ; Female ; Gene Amplification ; Homozygote ; Humans ; Hypocalcemia/*genetics ; Immunoblotting ; Male ; Molecular Sequence Data ; *Mutation ; Receptors, Calcitriol ; Receptors, Steroid/*genetics/metabolism ; Rickets/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...