ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-08
    Description: The abundance of cellular proteins is determined largely by the rate of transcription and translation coupled with the stability of individual proteins. Although we know a great deal about global transcript abundance, little is known about global protein stability. We present a highly parallel multiplexing strategy to monitor protein turnover on a global scale by coupling flow cytometry with microarray technology to track the stability of individual proteins within a complex mixture. We demonstrated the feasibility of this approach by measuring the stability of approximately 8000 human proteins and identifying proteasome substrates. The technology provides a general platform for proteome-scale analysis of protein turnover under various physiological and disease conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yen, Hsueh-Chi Sherry -- Xu, Qikai -- Chou, Danny M -- Zhao, Zhenming -- Elledge, Stephen J -- AG11085/AG/NIA NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):918-23. doi: 10.1126/science.1160489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988847" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/analysis ; Cell Cycle ; Cell Line ; DNA, Complementary ; Flow Cytometry ; Green Fluorescent Proteins/analysis/metabolism ; Half-Life ; Humans ; Luminescent Proteins/analysis/metabolism ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; Proteasome Endopeptidase Complex/*metabolism ; Protein Biosynthesis ; *Protein Stability ; Proteins/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-11-08
    Description: Ubiquitin-mediated proteolysis regulates all aspects of cellular function, and defects in this process are associated with human diseases. The limited number of identified ubiquitin ligase-substrate pairs is a major bottleneck in the ubiquitin field. We established and applied genetic technologies that combine global protein stability (GPS) profiling and genetic perturbation of E3 activity to screen for substrates of the Skp1-cullin-F-box (SCF) ubiquitin ligase in mammalian cells. Among the 〉350 potential substrates identified, we found most known SCF targets and many previously unknown substrates involved in cell cycle, apoptosis, and signaling pathways. Exploring cell cycle-stage stability, we found that several substrates used the SCF and other E3s in different cell cycle stages. Our results demonstrate the potential of these technologies as general platforms for the global discovery of E3-substrate regulatory networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yen, Hsueh-Chi Sherry -- Elledge, Stephen J -- AG 11085/AG/NIA NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):923-9. doi: 10.1126/science.1160462.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988848" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; Cell Cycle ; Cell Cycle Proteins/isolation & purification/metabolism ; Cell Line ; Cullin Proteins/genetics/metabolism ; Green Fluorescent Proteins/analysis/metabolism ; Half-Life ; Humans ; Luminescent Proteins/analysis/metabolism ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; *Protein Stability ; Proteins/genetics/isolation & purification/*metabolism ; Recombinant Fusion Proteins/metabolism ; SKP Cullin F-Box Protein Ligases/antagonists & inhibitors/genetics/*metabolism ; Signal Transduction ; Substrate Specificity ; cdc25 Phosphatases/isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...