ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-18
    Description: A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 degrees C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 A. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunette, T J -- Parmeggiani, Fabio -- Huang, Po-Ssu -- Bhabha, Gira -- Ekiert, Damian C -- Tsutakawa, Susan E -- Hura, Greg L -- Tainer, John A -- Baker, David -- GM105404/GM/NIGMS NIH HHS/ -- K99GM112982/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 24;528(7583):580-4. doi: 10.1038/nature16162. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA. ; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California 94158, USA. ; Department of Microbiology and Immunology, UCSF, San Francisco, California 94158, USA. ; Molecular Biophysics &Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA. ; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. ; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675729" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Motifs ; Amino Acid Sequence ; *Bioengineering ; *Computer Simulation ; Crystallography, X-Ray ; Models, Molecular ; *Protein Conformation ; Protein Folding ; Protein Stability ; Proteins/*chemistry ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...