ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-10-27
    Description: The phytohormone abscisic acid (ABA) mediates the adaptation of plants to environmental stresses such as drought and regulates developmental signals such as seed maturation. Within plants, the PYR/PYL/RCAR family of START proteins receives ABA to inhibit the phosphatase activity of the group-A protein phosphatases 2C (PP2Cs), which are major negative regulators in ABA signalling. Here we present the crystal structures of the ABA receptor PYL1 bound with (+)-ABA, and the complex formed by the further binding of (+)-ABA-bound PYL1 with the PP2C protein ABI1. PYL1 binds (+)-ABA using the START-protein-specific ligand-binding site, thereby forming a hydrophobic pocket on the surface of the closed lid. (+)-ABA-bound PYL1 tightly interacts with a PP2C domain of ABI1 by using the hydrophobic pocket to cover the active site of ABI1 like a plug. Our results reveal the structural basis of the mechanism of (+)-ABA-dependent inhibition of ABI1 by PYL1 in ABA signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyazono, Ken-Ichi -- Miyakawa, Takuya -- Sawano, Yoriko -- Kubota, Keiko -- Kang, Hee-Jin -- Asano, Atsuko -- Miyauchi, Yumiko -- Takahashi, Mihoko -- Zhi, Yuehua -- Fujita, Yasunari -- Yoshida, Takuya -- Kodaira, Ken-Suke -- Yamaguchi-Shinozaki, Kazuko -- Tanokura, Masaru -- England -- Nature. 2009 Dec 3;462(7273):609-14. doi: 10.1038/nature08583.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19855379" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*physiology ; Arabidopsis/*physiology ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; *Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...