ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-26
    Description: Crystal structure analyses for biological macromolecules without known structural relatives entail solving the crystallographic phase problem. Typical de novo phase evaluations depend on incorporating heavier atoms than those found natively; most commonly, multi- or single-wavelength anomalous diffraction (MAD or SAD) experiments exploit selenomethionyl proteins. Here, we realize routine structure determination using intrinsic anomalous scattering from native macromolecules. We devised robust procedures for enhancing the signal-to-noise ratio in the slight anomalous scattering from generic native structures by combining data measured from multiple crystals at lower-than-usual x-ray energy. Using this multicrystal SAD method (5 to 13 equivalent crystals), we determined structures at modest resolution (2.8 to 2.3 angstroms) for native proteins varying in size (127 to 1148 unique residues) and number of sulfur sites (3 to 28). With no requirement for heavy-atom incorporation, such experiments provide an attractive alternative to selenomethionyl SAD experiments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Qun -- Dahmane, Tassadite -- Zhang, Zhen -- Assur, Zahra -- Brasch, Julia -- Shapiro, Lawrence -- Mancia, Filippo -- Hendrickson, Wayne A -- GM034102/GM/NIGMS NIH HHS/ -- GM062270/GM/NIGMS NIH HHS/ -- GM095315/GM/NIGMS NIH HHS/ -- R01 GM034102/GM/NIGMS NIH HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 25;336(6084):1033-7. doi: 10.1126/science.1218753.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628655" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry ; Crystallography, X-Ray/*methods ; Data Interpretation, Statistical ; GPI-Linked Proteins/chemistry ; Models, Molecular ; Nerve Tissue Proteins/chemistry ; *Protein Conformation ; Protein Kinases/chemistry ; Protein Structure, Tertiary ; Proteins/*chemistry ; Selenomethionine/chemistry ; Signal-To-Noise Ratio ; Sulfur/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-23
    Description: In mitosis, the spindle assembly checkpoint (SAC) ensures genome stability by delaying chromosome segregation until all sister chromatids have achieved bipolar attachment to the mitotic spindle. The SAC is imposed by the mitotic checkpoint complex (MCC), whose assembly is catalysed by unattached chromosomes and which binds and inhibits the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome segregation. Here, using the crystal structure of Schizosaccharomyces pombe MCC (a complex of mitotic spindle assembly checkpoint proteins Mad2, Mad3 and APC/C co-activator protein Cdc20), we reveal the molecular basis of MCC-mediated APC/C inhibition and the regulation of MCC assembly. The MCC inhibits the APC/C by obstructing degron recognition sites on Cdc20 (the substrate recruitment subunit of the APC/C) and displacing Cdc20 to disrupt formation of a bipartite D-box receptor with the APC/C subunit Apc10. Mad2, in the closed conformation (C-Mad2), stabilizes the complex by optimally positioning the Mad3 KEN-box degron to bind Cdc20. Mad3 and p31(comet) (also known as MAD2L1-binding protein) compete for the same C-Mad2 interface, which explains how p31(comet) disrupts MCC assembly to antagonize the SAC. This study shows how APC/C inhibition is coupled to degron recognition by co-activators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chao, William C H -- Kulkarni, Kiran -- Zhang, Ziguo -- Kong, Eric H -- Barford, David -- Cancer Research UK/United Kingdom -- England -- Nature. 2012 Mar 21;484(7393):208-13. doi: 10.1038/nature10896.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22437499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Anaphase-Promoting Complex-Cyclosome ; Cdc20 Proteins ; Cdh1 Proteins ; Cell Cycle Proteins/*chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; *M Phase Cell Cycle Checkpoints ; Mad2 Proteins ; Models, Molecular ; Multiprotein Complexes/*chemistry/metabolism ; Nuclear Proteins/*chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism ; Schizosaccharomyces/*chemistry ; Schizosaccharomyces pombe Proteins/*chemistry/metabolism ; Spindle Apparatus ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin-Protein Ligase Complexes/antagonists & ; inhibitors/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...