ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-10
    Description: Microarray-based gene expression analysis identified genes showing ploidy-dependent expression in isogenic Saccharomyces cerevisiae strains that varied in ploidy from haploid to tetraploid. These genes were induced or repressed in proportion to the number of chromosome sets, regardless of the mating type. Ploidy-dependent repression of some G1 cyclins can explain the greater cell size associated with higher ploidies, and suggests ploidy-dependent modifications of cell cycle progression. Moreover, ploidy regulation of the FLO11 gene had direct consequences for yeast development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galitski, T -- Saldanha, A J -- Styles, C A -- Lander, E S -- Fink, G R -- GM35010/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):251-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398601" target="_blank"〉PubMed〈/a〉
    Keywords: Chitinase/genetics ; Cyclins/genetics ; Fungal Proteins/genetics ; G1 Phase ; *Gene Expression Regulation, Fungal ; Haploidy ; Lipoproteins/genetics/physiology ; Membrane Glycoproteins ; Membrane Proteins/genetics ; Oligonucleotide Array Sequence Analysis ; Peptides/genetics/physiology ; Pheromones ; *Ploidies ; Polyploidy ; Saccharomyces cerevisiae/cytology/*genetics/physiology ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-24
    Description: We generated a high-resolution whole-genome sequence and individually deleted 5100 genes in Sigma1278b, a Saccharomyces cerevisiae strain closely related to reference strain S288c. Similar to the variation between human individuals, Sigma1278b and S288c average 3.2 single-nucleotide polymorphisms per kilobase. A genome-wide comparison of deletion mutant phenotypes identified a subset of genes that were conditionally essential by strain, including 44 essential genes unique to Sigma1278b and 13 unique to S288c. Genetic analysis indicates the conditional phenotype was most often governed by complex genetic interactions, depending on multiple background-specific modifiers. Our comprehensive analysis suggests that the presence of a complex set of modifiers will often underlie the phenotypic differences between individuals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412269/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412269/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dowell, Robin D -- Ryan, Owen -- Jansen, An -- Cheung, Doris -- Agarwala, Sudeep -- Danford, Timothy -- Bernstein, Douglas A -- Rolfe, P Alexander -- Heisler, Lawrence E -- Chin, Brian -- Nislow, Corey -- Giaever, Guri -- Phillips, Patrick C -- Fink, Gerald R -- Gifford, David K -- Boone, Charles -- DK076284/DK/NIDDK NIH HHS/ -- GM035010/GM/NIGMS NIH HHS/ -- GM069676/GM/NIGMS NIH HHS/ -- P01 NS055923/NS/NINDS NIH HHS/ -- R01 GM035010/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Apr 23;328(5977):469. doi: 10.1126/science.1189015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413493" target="_blank"〉PubMed〈/a〉
    Keywords: Crosses, Genetic ; Gene Deletion ; *Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; *Genes, Essential ; *Genes, Fungal ; Genetic Variation ; Genome, Fungal ; Genotype ; Mutation ; Phenotype ; Saccharomyces cerevisiae/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-18
    Description: The dimorphic switch from a single-cell budding yeast to a filamentous form enables Saccharomyces cerevisiae to forage for nutrients and the opportunistic pathogen Candida albicans to invade human tissues and evade the immune system. We constructed a genome-wide set of targeted deletion alleles and introduced them into a filamentous S. cerevisiae strain, Sigma1278b. We identified genes involved in morphologically distinct forms of filamentation: haploid invasive growth, biofilm formation, and diploid pseudohyphal growth. Unique genes appear to underlie each program, but we also found core genes with general roles in filamentous growth, including MFG1 (YDL233w), whose product binds two morphogenetic transcription factors, Flo8 and Mss11, and functions as a critical transcriptional regulator of filamentous growth in both S. cerevisiae and C. albicans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryan, Owen -- Shapiro, Rebecca S -- Kurat, Christoph F -- Mayhew, David -- Baryshnikova, Anastasia -- Chin, Brian -- Lin, Zhen-Yuan -- Cox, Michael J -- Vizeacoumar, Frederick -- Cheung, Doris -- Bahr, Sondra -- Tsui, Kyle -- Tebbji, Faiza -- Sellam, Adnane -- Istel, Fabian -- Schwarzmuller, Tobias -- Reynolds, Todd B -- Kuchler, Karl -- Gifford, David K -- Whiteway, Malcolm -- Giaever, Guri -- Nislow, Corey -- Costanzo, Michael -- Gingras, Anne-Claude -- Mitra, Robi David -- Andrews, Brenda -- Fink, Gerald R -- Cowen, Leah E -- Boone, Charles -- 42516-4/Canadian Institutes of Health Research/Canada -- GM035010/GM/NIGMS NIH HHS/ -- GM40266/GM/NIGMS NIH HHS/ -- MOP-97939/Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1353-6. doi: 10.1126/science.1224339.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22984072" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Biofilms/growth & development ; Candida albicans/cytology/*genetics/*growth & development ; DNA Mutational Analysis ; Gene Deletion ; *Gene Expression Regulation, Fungal ; Hyphae/genetics/growth & development ; Nuclear Proteins/genetics ; Saccharomyces cerevisiae/cytology/*genetics/*growth & development ; Saccharomyces cerevisiae Proteins/genetics ; Trans-Activators/genetics ; Transcription Factors/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...