ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-03-30
    Description: Primary human cells in culture invariably stop dividing and enter a state of growth arrest called replicative senescence. This transition is induced by programmed telomere shortening, but the underlying mechanisms are unclear. Here, we report that overexpression of TRF2, a telomeric DNA binding protein, increased the rate of telomere shortening in primary cells without accelerating senescence. TRF2 reduced the senescence setpoint, defined as telomere length at senescence, from 7 to 4 kilobases. TRF2 protected critically short telomeres from fusion and repressed chromosome-end fusions in presenescent cultures, which explains the ability of TRF2 to delay senescence. Thus, replicative senescence is induced by a change in the protected status of shortened telomeres rather than by a complete loss of telomeric DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlseder, Jan -- Smogorzewska, Agata -- de Lange, Titia -- AG16643/AG/NIA NIH HHS/ -- CA76027/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2446-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11923537" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Polyomavirus Transforming/genetics/metabolism ; *Cell Aging ; *Cell Division ; Cell Line ; Cells, Cultured ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Humans ; Oncogene Proteins, Viral/genetics/metabolism ; Papillomavirus E7 Proteins ; *Repressor Proteins ; Retinoblastoma Protein/metabolism ; Retroviridae/genetics ; Telomere/metabolism/*physiology ; Telomeric Repeat Binding Protein 2 ; Transformation, Genetic ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...