ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1017
    Keywords: Na-Pump current-voltage relationship ; Na dependence ; Access channel ; N-Terminus truncation ; (Xenopus oocyte)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Currents generated by the Na+/K+ ATPase were measured under voltage clamp in oocytes of Xenopus laevis. The dependence of pump current on external [Na+] was investigated for the endogenous Xenopus pump as well as for wild-type and mutated pumps of electroplax of Torpedo californica expressed in the oocytes. The mutants had α-subunits truncated before position Lys28 (αΔK28) or Thr29 (αΔT29) of the N-terminus. The currents generated by all variants of pump molecules in the presence of 5 mM K+ show voltage-dependent inhibition by external [Na+]. The apparent K1 values increase with membrane depolarisation, and the potential dependence can be described by the movement of effective charges in the electrical potential gradient across the membrane. Taking into account Na+-K+ competition for external binding to the E2P form, apparent K1 values and effective charges for the interaction of the Na+ ions with the E2P form can be estimated. For the Xenopus pump the effective charge amounts to 1.1 of an elementary charge and the K1 value at 0 mV to 44 mM. For the wild-type Torpedo pump, the analysis yields values of 0.73 of an elementary charge and 133 mM, respectively. Truncation at the N-terminus removing a lysinerich cluster of the a-subunit of the Torpedo pump leads to an increase of the effective charge and decrease of the K1 value. For αΔK28, values of 0.83 of an elementary charge and 117 mM are obtained, respectively. If LyS28 is included in the truncation (α·T29), the effective charge increases to 1.5 of an elementary charge and the apparent K1 value is reduced to 107 mM. The K, values for pump inhibition by external Na+, calculated by taking into account Na+-K+ competition, are smaller than the K/12 values determined in the presence of 5 mM [K+]. The difference is more pronounced for those pump variants that have higher Km, values. The variations of the parameters describing inhibition by external [Na+] are qualitatively similar to those described for the stimulation of the pumps by external [K+] in the absence of extracellular [Na+]. The observations may be explained by an acess channel within the membrane dielectric that has to be passed by the external Na+ and K+ ions to reach or leave their binding sites. The potential-dependent access and/or the interaction with the binding sites shows species differences and is affected by cytoplasmic lysine residues in the N-terminus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: DNA sequence ; Cellulase ; Endoglucanase ; Clostridium stercorarium ; Avocado
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nucleotide sequence of the celZ gene coding for a thermostable endo-β-1,4-glucanase (Avicelase I) of Clostridium stercorarium was determined. The structural gene consists of an open reading frame of 2958 by which encodes a preprotein of 986 amino acids with an Mr of 109000. The signal peptide cleavage site was identified by comparison with the N-terminal amino acid sequence of Avicelase I purified from C. stercorarium culture supernatants. The recombinant protein expressed in Escherichia coli is proteolytically cleaved into catalytic and cellulose-binding fragments of about 50 kDa each. Sequence comparison revealed that the N-terminal half of Avicelase I is closely related to avocado (Persea americana) cellulase. Homology is also observed with Clostridium thermocellum endoglucanase D and Pseudomonas fuorescens cellulase. The cellulose-binding region was located in the C-terminal half of Avicelase I. It consists of a reiterated domain of 88 amino acids flanked by a repeated sequence about 140 amino acids in length. The C-terminal flanking sequence is highly homologous to the non-catalytic domain of Bacillus subtilis endoglucanase and Caldocellum saccharolyticum endoglucanase B. It is proposed that the enhanced cellulolytic activity of Avicelase I is due to the presence of multiple cellulose-binding sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...