ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • metabolism  (1)
  • ω-Phenylalkane carboxylic acids  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Anaerobic degradation ; Aromatic compounds ; Rhodopseudomonas palustris ; ω-Phenylalkane carboxylic acids ; trans-cinnamic acid ; 3-Phenylpropionic acid ; 4-Phenylbutyric acid ; β-Oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mechanism responsible for the initial steps in the anaerobic degradation of trans-cinnamate and ω-phenylalkane carboxylates by the purple non-sulphur photosynthetic bacterium Rhodopseudomonas palustris was investigated. Phenylacetate did not support growth and there was a marked CO2 dependence for growth on acids with greater side-chain lengths. Here, CO2 was presumably acting as a redox sink for the disposal of excess reducing equivalents. Growth on benzoate did not require the addition of exogenous CO2. Aromatic acids with an odd number of side-chain carbon atoms (3-phenylpropionate, 5-phenylvalerate, 7-phenylheptanoate) gave greater apparent molar growth yields than those with an even number of side-chain carbon atoms (4-phenylbutyrate, 6-phenylhexanoate, 8-phenyloctanoate). HPLC analysis revealed that phenylacetate accumulated and persisted in the culture medium during growth on these latter compounds. Cinnamate and benzoate transiently accumulated in the culture medium during growth on 3-phenylpropionate, and benzoate alone accumulated transiently during the course of trans-cinnamate degradation. The transient accumulation of 4-phenyl-2-butenoic acid occurred during growth on 4-phenylbutyrate, and phenylacetate accumulated to a 1:1 molar stoichiometry with the initial 4-phenylbutyrate concentration. It is proposed that the initial steps in the anaerobic degradation of trans-cinnamate and the group of acids from 3-phenylpropionate to 8-phenyloctanoate involves β-oxidation of the side-chain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 1 (1990), S. 79-92 
    ISSN: 1572-9729
    Keywords: aliphatic hydrocarbons ; alkanes ; alkenes ; biodegradation ; metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper reviews aspects of the physiology and biochemistry of the microbial biodegradation of alkanes larger than methane, alkenes and alkynes with particular emphasis upon recent developments. Subject areas discussed include: substrate uptake; metabolic pathways for alkenes and straight and branched-chain alkanes; the genetics and regulation of pathways; co-oxidation of aliphatic hydrocarbons; the potential for anaerobic aliphatic hydrocarbon degradation; the potential deployment of aliphatic hydrocarbon-degrading microorganisms in biotechnology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...