ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • α-galactosidase  (2)
  • Wiley-Blackwell  (2)
  • Oxford University Press
  • American Chemical Society (ACS)
  • 1990-1994  (2)
Collection
Publisher
  • Wiley-Blackwell  (2)
  • Oxford University Press
  • American Chemical Society (ACS)
Years
  • 1990-1994  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 717-724 
    ISSN: 0006-3592
    Keywords: Chromatography costs ; cost equations ; α-galactosidase ; enzyme purification ; affinity chromatography ; ion-exchange chromatography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The purification of α-galactosidase from soybean seeds is a five to six-step procedure consisting of cryoprecipitation, acid precipitation and ammonium sulfate fractionation followed by two or three chromatography steps. The procedures, while not optimized, were carried out in a manner that resulted in 414-515-fold purification, as reported previously. The costs of two purification sequences were compared. In the best case, the preparative-scale costs of stationary phase, reagents, and hardware were $790 per million enzyme units, excluding labor. Stationary phase costs predominated over extraction, chromatography reagent, and eluent costs when the stationary phase is replaced after 10-40 cycles of use. However, if stationary phase life exceeds 50-200 cycles, stationary phase costs become similar in magnitude to eluent and reagent costs. Labor costs, which are process-specific and difficult to estimate, exceed all other costs by a factor of 10-50 at a small scale of operation and constitute a major cost, regardless of scale. This case study provides equations and a frame-work for carrying out a first comparison of costs for multistep purification sequences. Column life, throughput, and scale of operation were found to determine not only the magnitude, but also the relative contributions, of the different components that make up purification costs. This analysis shows that there are major opportunities for reducing purification costs through the development of less expensive stationary phases and the implementation of intelligent process control and automation for process scale chromatography.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 356-363 
    ISSN: 0006-3592
    Keywords: α-galactosidase ; soybeans ; lectin ; scaleup ; chromatography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Soybeans (Glycine max) contain an α-galactosidase that makes up a small fraction of the total protein of the seed. The properties of this enzyme are of interest because of its potential to convert the galactooligosaccharides, stachyose and raffinose, in soybean meal to sugars digestible in the human gastro intestinal tract and thereby increase potential uses of this vegetable protein source in human and animal foods. Study of this enzyme required the isolation of milligram quantities of electrophoretically pure protein from ground soybeans and therefore, scaleup of laboratory procedures by a factor of 300 times. Large scale acid precipitation, ammonium sulfate precipitation, and centrifugal recovery of the precipitated protein allowed α-galactosidase to be isolated from 45.5 kg soybean meal containing 17.1 kg protein, to obtain an enzyme extract with a specific activity of 90 to 100. A novel combination of strong anion exchange and cation exchange chromatography followed by Concanavalin-A affinity chromatography with a methyl α-D mannoside gradient gave α-galactosidase with an average specific activity of 56,000. Ion exchange chromatography preceding Concanavalin-A affinity chromatography allowed elimination of a relatively costly melibiose affinity chromatography step (which followed the Concanavalin-A column In the laboratory procedure) thereby making scaleup practical.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...