ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0887-6266
    Keywords: substituent group of polyimide ; sorption and diffusion of gas ; free volume ; cohesive energy density ; activation energy for diffusion ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Sorption rate curves of CO2, N2, and He gases below 1 atm were measured for polyimide films prepared from benzophenone tetracarboxylic dianhydride (BTDA) with 3,5-diaminotoluene trifluoride (DATF), 2,4-diaminotoluene (DAT), m-phenylenediamine (MPD), and diaminobenzoic acid (DABA). The molecular structures of these four polyimides differ only in the substituent groups of the diamine structure. These polyimides exhibit dualmode type sorption isotherms for carbon dioxide that are concave to the pressure axis, typical of glassy polymer/gas system. The apparent diffusion coefficients below 1 atm pressure of carbon dioxide for this series of compounds decrease in the order: BTDA-DATF 〉 BTDA-DAT 〉 BTDA-MPD 〉 BTDA-DABA. A linear relation between the logarithm of the apparent diffusion coefficient and the reciprocal of free volume, calculated by the method of Bondi using density data, is found for these polyimides. However, this tendency is not observed for the other two gases. The activation energies of the apparent diffusion coefficients at 20 cmHg pressure of carbon dioxide increase with increasing cohesive energy density of the polyimides. The energy per mole of free volume elements in a liquidlike structure in each cohesive energy density may be equated to the activation energy and used to calculate the free volume. The values from the activation energy are almost the same as those from Bondi's method.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...