ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Design, Testing and Performance  (47)
  • 1
    Publication Date: 2019-07-13
    Description: The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-16795 , International Planetary Probe Workshop (IPPW-10); 17-21 Jun. 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: The Earth Observing System (EOS) AM-1 spacecraft for NASA's Mission to Planet Earth is scheduled to be launched on an Atlas IIAS vehicle in June of 1998. One concern is that the instruments on the EOS spacecraft are sensitive to the shock-induced vibration produced when the spacecraft separates from the launch vehicle. By employing unique statistical analysis to the available ground test shock data, the NASA Lewis Research Center found that shock-induced vibrations would not be as great as the previously specified levels of Lockheed Martin. The EOS pyroshock separation testing, which was completed in 1997, produced a large quantity of accelerometer data to characterize the shock response levels at the launch vehicle/spacecraft interface. Thirteen pyroshock separation firings of the EOS and payload adapter configuration yielded 78 total measurements at the interface. The multiple firings were necessary to qualify the newly developed Lockheed Martin six-hardpoint separation system. Because of the unusually large amount of data acquired, Lewis developed a statistical methodology to predict the maximum expected shock levels at the interface between the EOS spacecraft and the launch vehicle. Then, this methodology, which is based on six shear plate accelerometer measurements per test firing at the spacecraft/launch vehicle interface, was used to determine the shock endurance specification for EOS. Each pyroshock separation test of the EOS spacecraft simulator produced its own set of interface accelerometer data. Probability distributions, histograms, the median, and higher order moments (skew and kurtosis) were analyzed. The data were found to be lognormally distributed, which is consistent with NASA pyroshock standards. Each set of lognormally transformed test data produced was analyzed to determine if the data should be combined statistically. Statistical testing of the data's standard deviations and means (F and t testing, respectively) determined if data sets were significantly different at a 95-percent confidence level. If two data sets were found to be significantly different, these families of data were not combined for statistical purposes. This methodology produced three separate statistical data families of shear plate data. For each population, a P99.1/50 (probability/confidence) per-separation-nut firing level was calculated. By using the binomial distribution, Lewis researchers determined that this pernut firing level was equivalent to a P95/50 per-flight confidence level. The overall envelope of the per-flight P95/50 levels led to Lewis' recommended EOS interface shock endurance specification. A similar methodology was used to develop Lewis' recommended EOS mission assurance levels. The available test data for the EOS mission are significantly larger than for a normal mission, thus increasing the confidence level in the calculated expected shock environment. Lewis significantly affected the EOS mission by properly employing statistical analysis to the data. This analysis prevented a costly requalification of the spacecraft's instruments, which otherwise would have been exposed to significantly higher test levels.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 1-13; NASA/CP-1999-208598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale. In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN43176 , International Planetary Probe Workshop; 12-16 Jun. 2017; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Space Simulation; 27-29 Oct. 1998; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A Cassini spacecraft simulator in a full scale 60 foot high Titan 4 payload fairing with various acoustic blanket designs and configurations was recently tested in a large reverberant acoustic chamber. A first part companion paper provides the test configuration details and other background information. This paper addresses the results obtained from this test program. Emphasis will be on the effects of the new blanket designs on reducing the payload fairing's internal acoustics and the vibration response of the spacecraft's Radioisotope Thermoelectric Generators. Other results discussed include: the effect of blankets on fairing vibration, the effect of partial blanket coverage on acoustics and vibration and the effect of tuned vibration absorbers.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-TM-107475 , NAS 1.15:107475 , E-10764 , Shock and Vibration; 18-22 Nov. 1996; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The current state of satellite operation automation at the NASA Goddard Space Flight Center (GSFC), MD, is described, discussing the short term future and presenting a vision of how automation should be used in future systems. The automation practices currently applied in several current programs are surveyed. The rapidly evolving level of spacecraft autonomy is considered, reviewing how future onboard capabilities will affect ground based automation efforts. The optimum role of automation is discussed and automation principles are presented that can be used to identify favorable opportunities for simplifying and reducing the operating cost of spaceborne science missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Paper-SO96.8.007 , The Fourth International Symposium on Space Mission Operations and Ground Data Systems; 3; 1262-1269; ESA-SP-394-Vol-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We present a method to solve the impulsive minimum fuel maneuver problem for a distributed set of spacecraft. We develop the method assuming a non-linear dynamics model and parameterize the problem to allow the method to be applicable to multiple flight regimes including low-Earth orbits, highly-elliptic orbits (HEO), Lagrange point orbits, and interplanetary trajectories. Furthermore, the approach is not limited by the inter-spacecraft separation distances and is applicable to both small formations as well as large constellations. Semianalytical derivatives are derived for the changes in the total AV with respect to changes in the independent variables. We also apply a set of constraints to ensure that the fuel expenditure is equalized over the spacecraft in formation. We conclude with several examples and present optimal maneuver sequences for both a HE0 and libration point formation.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS 05-158 , 15th AAS/AIAA Space Flight Mechanics Meeting; 23-27 Jan. 2005; Copper Mountain, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The U.S. Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC), and NASA John H. Glenn Research Center (GRC) are currently developing a high-efficiency Stirling convertor for use in a Stirling Radioisotope Generator (SRG). NASA and DOE have identified the SRG for potential use as an advanced power system for future NASA Space Science missions, providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. Low-level, baseshake sine vibration tests were conducted on the Stirling Technology Demonstration Convertor (TDC), at NASA GRC's Structural Dynamics Laboratory, in February 2001, as part of the development of this Stirling technology. The purpose of these tests was to provide a better understanding of the TDC's internal dynamic response to external vibratory base excitations. The knowledge obtained can therein be used to help explain the success that the TDC enjoyed in its previous random vibration qualification tests (December 1999). This explanation focuses on the TDC s internal dynamic characteristics in the 50 to 250 Hz frequency range, which corresponds to the maximum input levels of its qualification random vibration test specification. The internal dynamic structural characteristics of the TDC have now been measured in two separate tests under different motoring and dynamic loading conditions: (1) with the convertor being electrically motored, under a vibratory base-shake excitation load, and (2) with the convertor turned off, and its alternator internals undergoing dynamic excitation via hammer impact loading. This paper addresses the test setup, procedure and results of the base-shake vibration testing conducted on the motored TDC, and will compare these results with those results obtained from the dynamic impact tests (May 2001) on the nonmotored TDC.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2003-212479 , E-14017 , AIAA Paper 2003-6096 , First International Energy Conversion Engineering Conference; 17-21 Aug. 2003; Portsmouth, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The driving requirement for design of a Mars Sample return mission is assuring containment of the returned samples. The impact of this requirement on developmental costs, mass allocation, and design approach of the Earth Entry Vehicle is significant. A simple Earth entry vehicle is described which can meet these requirements and safely transport the Mars Sample Return mission's sample through the Earth's atmosphere to a recoverable location on the surface. Detailed analysis and test are combined with probabilistic risk assessment to design this entirely passive concept that circumvents the potential failure modes of a parachute terminal descent system. The design also possesses features that mitigate other risks during the entry, descent, landing and recovery phases. The results of a full-scale drop test are summarized.
    Keywords: Spacecraft Design, Testing and Performance
    Type: IAF-00-Q.3.04 , 51st International Astronautics Federation Congress; 2-6 Oct. 2000; Rio de Janeiro; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...