ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The solar cycle (SC) effect in the lower atmosphere has been linked observationally to the quasi-biennial oscillation (QBO) of the zonal circulation. Salby and Callaghan (2000) in particular analyzed the QBO covering more than 40 years and found that it contains a large SC signature at 20 km. We discuss a 3D study in which we simulate the QBO under the influence of the SC. For a SC period of 10 years, the relative amplitude of radiative forcing is taken to vary with height: 0.2% (surface), 2% (50 km), 20% (100 km and above). This model produces in the lower stratosphere a relatively large modulation of the QBO, which appears to come from the SC and qualitatively agrees with the observations. The modulation of the QBO, with constant phase relative to the SC, is shown to persist at least for 50 years, and it is induced by a SC modulated annual oscillation that is hemispherically symmetric and confined to low latitudes.
    Keywords: Solar Physics
    Type: Geophysical Research Letters; Volume 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the island. (3) The main-arch bright loops are likely to be heated via reconnection driven at the magnetic null over the island. The details of how and where (along the null line) the reconnection is driven determine which of the split-end loops are selected for strong heating. (4) The null does not appear to be directly involved in the heating of the sheared core fields or in the heating of an extended loop rooted in the island. Rather, these all appear to be heated by microflares in the sheared core field.
    Keywords: Solar Physics
    Type: Astrophysical Journal; Volume 528; 1004-1014
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: We examine the magnetic origins of coronal heating in quiet regions by combining SOHO/EIT Fe xii coronal images and Kitt Peak magnetograms. Spatial filtering of the coronal images shows a network of enhanced structures on the scale of the magnetic network in quiet regions. Superposition of the filtered coronal images on maps of the magnetic network extracted from the magnetograms shows that the coronal network does indeed trace and stem from the magnetic network. Network coronal bright points, the brightest features in the network lanes, are found to have a highly significant coincidence with polarity dividing lines (neutral lines) in the network and are often at the feet of enhanced coronal structures that stem from the network and reach out over the cell interiors. These results indicate that, similar to the close linkage of neutral-line core fields with coronal heating in active regions (shown in previous work), low-lying core fields encasing neutral lines in the magnetic network often drive noticeable coronal heating both within themselves (the network coronal bright points) and on more extended field lines rooted around them. This behavior favors the possibility that active core fields in the network are the main drivers of the heating of the bulk of the quiet corona, on scales much larger than the network lanes and cells.
    Keywords: Solar Physics
    Type: Astrophysical Journal; Volume 501; 386-396
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle, It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes referred to as "downward control". Relatively small changes in solar radiative forcing can produce small changes in the period and phase of the QBO, but this in turn can produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D (two-dimensional) version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1 % at the surface to 1 % at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is inconsequential. At 20-km the differences in the modeled wind velocities are as large as 5 m/s. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing (through the Semi-annual Oscillation (SAO)) acts as a strong pacemaker to lockup the phase and period of the QBO. The SCAE then shows up primarily as a distinct but relatively weak amplitude modulation. But with the QBO period between 30 and 34 (or less than 30, presumably) months, the seasonal phase lock is weak. Solar flux radiance variations in the seasonal cycle then cause variations in the QBO period and phase that amplify the SCAE to produce relatively large variations in the wind field. These variations also extend to mid latitudes.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar wind charge-exchange contribution is approximately 40 percent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN24159 , Nature; 512; 7513; 171-173
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the presence of a polarity inversion in the magnetic field near at least one of the loop footpoints; (2) is greatly aided by the presence of strong shear in the core magnetic field along that neutral line; and (3) is controlled by some variable process that acts in this magnetic environment. We infer that this variable process is low-lying reconnection accompanying flux cancellation.
    Keywords: Solar Physics
    Type: NASA-TM-112520 , NAS 1.15:112520 , The Astrophysical Journal; 482; 1; 519-534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We analyze the cooling of the X-ray emitting thermal plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope. A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approximately 2 x 10(exp 8) cm) (Shimizu 1995, PASJ, 47, 251). The X-ray plasma in the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is filled by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (1995) (X-ray brightness through the thin aluminum filter approximately 4 x 10(exp 3) DN/s/pixel, lifetime approximately 5 min, temperature approximately 6 x 10(exp 6) K, loop length approximately 10(exp 9) cm, loop diameter approximately 3 x 10(exp 8) cm), we find that for filling factors greater than approximately 1% (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that (1) heating to X-ray temperatures continues through nearly the entire life of a microflare, (2) the heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (less than approximately 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from Yohkoh will show plenty of rapidly changing filamentary substructure in microflares.
    Keywords: Solar Physics
    Type: 26-May-98; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The Diffuse X-rays from the Local galaxy (DXL) mission is an approved sounding rocket project with a first launch scheduled around December 2012. Its goal is to identify and separate the X-ray emission generated by solar wind charge exchange from that of the local hot bubble to improve our understanding of both. With 1,000 square centimeters proportional counters and grasp of about 10 square centimeters sr both in the 1/4 and 3/4 keV bands, DXL will achieve in a 5-minute flight what cannot be achieved by current and future X-ray satellites.
    Keywords: Solar Physics
    Type: GSFC.JA.5273.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We report on observations of the solar atmosphere in several extreme-ultraviolet and far-ultraviolet bandpasses obtained by the Multi-Spectral Solar Telescope Array, a rocket-borne spectroheliograph, on flights in 1987, 1991, and 1994, spanning the last solar maximum. Quiet-Sun emission observed in the 171-175 Angstrom bandpass, which includes lines of O v, O VI, Fe IX, and Fe X, has been analyzed to test models of the temperatures and geometries of the structures responsible for this emission. Analyses of intensity variations above the solar limb reveal scale heights consistent with a quiet-Sun plasma temperature of 500,000 less than or equal to T (sub e) less than or equal to 800,000 K. The structures responsible for the quiet-Sun EUV emission are modeled as small quasi-static loops. We submit our models to several tests. We compare the emission our models would produce in the bandpass of our telescope to the emission we have observed. We find that the emission predicted by loop models with maximum temperatures between 700,000 and 900,000 K are consistent with our observations. We also compare the absolute flux predicted by our models in a typical upper transition region line to the flux measured by previous observers. Finally, we present a preliminary comparison of the predictions of our models with diagnostic spectral line ratios from previous observers. Intensity modulations in the quiet Sun are observed to occur on a scale comparable to the supergranular scale. We discuss the implications that a distribution of loops of the type we model here would have for heating the local network at the loops' footpoints.
    Keywords: Solar Physics
    Type: Astrophysical Journal; 524; 1105-1121
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.
    Keywords: Solar Physics
    Type: GSFC.JA.7033.2012 , Journal of Low Temperature Physics; 167; 4-Mar; 168-175
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...