ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-1948
    Keywords: Helicates ; Oligobipyridine ligands ; Self-recognition ; NMR titration ; Self-assembly ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Oligobipyridine ligands containing one or two imine bridges were found to form double helicates by treatment with copper(I) or silver(I). The properties of the complexes are similar to those of oxapropylene-bridged oligobipyridines. Titration of a mixture of the bis(bipyridine) and the tris(bipyridine) ligands with silver(I) hexafluorophosphate showed that helicates formed with strict self-recognition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-1948
    Keywords: Self-assembly ; Tetranuclear CuII complex ; [2 × 2] grid-type complex ; Crystal structure ; Magnetic properties ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The ditopic ligand 3 has been synthesized. In its deprotonated form, it reacts with copper(II) ions to form a tetranuclear complex 1 of the [2 × 2] CuII4 grid type, the structure of which has been confirmed by X-ray crystallography. Magnetic studies of complex 1 indicate a very weak antiferromagnetic coupling between the phenoxo-bridged CuII ions.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-1948
    Keywords: Grid complexes ; Self-assembly ; Co ; Zn ; Coordination chemistry ; Bis(tridentate) ligands ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The tretrametallic [2 × 2] grid-type complexes 1-4 are formed by self-assembly of the bis(tridentate) ligands 5 and 6 with ZnII and CoII cations. They have been characterized by spectroscopic studies in solution as well as by crystal structure determination. The substituents in the central pyrimidine ring play an important role in terms of geometry and physical properties of the complexes. They induce an orthogonal orientation of the ligand in the complexes which is critical for the formation of ordered monolayers and extended self-organized arrays of grids. The physical properties of the complexes such as metal-metal interaction and π-π* stacking between the ligands may be modulated by changing these substituents.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0570-0833
    Keywords: Self-assembly ; Information processing ; Molecular information processing ; Molecular recognition ; Supramolecular chemistry ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The selective binding of a substrate by a molecular receptor to form a supramolecular species involves molecular recognition which rests on the molecular information stored in the interacting species. The functions of supermolecules cover recognition, as well as catalysis and transport. In combination with polymolecular organization, they open ways towards molecular and supramolecular devices for information processing and signal generation. The development of such devices requires the design of molecular components performing a given function (e.g., photoactive, electroactive, ionoactive, thermoactive, or chemoactive) and suitable for assembly into an organized array. Light-conversion devices and charge-separation centers have been realized with photoactive cryptates formed by receptors containing photosensitive groups. Eleclroactive and ionoactive devices are required for carrying information via electronic and ionic signals. Redox-active polyolefinic chains, like the “caroviologens”, represent molecular wires for electron transfer through membranes. Push-pull polyolefins possess marked nonlinear optical properties. Tubular mesophases, formed by organized stacking of suitable macro-cyclic components, as well as “chundle”-type structures, based on bundles of chains grafted onto a macrocyclic support, represent approaches to ion channels. Lipophilic macrocyclic units form Langmuir-Blodgett films that may display molecular recognition at the air-water interface. Supramolecular chemistry has relied on more or less preorganized molecular receptors for effecting molecular recognition, catalysis, and transport processes. A step beyond preorganization consists in the design of systems undergoing self-organization, that is, systems capable of spontaneously generating a well-defined supramolecular architecture by self-assembling from their components under a given set of conditions. Several approaches to self-assembling systems have been pursued: the formation of helical metal complexes, the double-stranded helicates, which result from the spontaneous organization of two linear polybipyridine ligands into a double helix by binding of specific metal ions; the generation of mesophases and liquid crystalline polymers of supramolecular nature from complementary components, amounting to macroscopic expression of molecular recognition; the molecular-recognition-directed formation of ordered solid-state structures. Endowing photo-, electro-, and ionoactive components with recognition elements opens perspectives towards the design of programmed molecular and supramolecular systems capable of self-assembly into organized and functional supramolecular devices. Such systems may be able to perform highly selective operations of recognition, reaction, transfer, and structure generation for signal and information processing at the molecular and supramolecular levels.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...