ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: Al effect ; microprobe analysis ; nutrient uptake ; pH effect ; Picea abies ; stable isotope labelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a model system using intact spruce trees (Picea abies [L.] Karst.) we followed the path of magnesium, calcium and potassium during uptake into the root and during long-range transport into the shoot, by multiple stable isotope labelling. The roots of two- and three-year-old spruce trees originating from soil culture were removed from the soil and, in part or in toto, exposed to labelling solutions containing the stable isotopes 25Mg or 26Mg, 41K and 42Ca or 44Ca. Optical-emission-spectroscopy (ICP-OES) of plant fractions and labelling solutions was combined with the quantitative analysis of stable isotope ratios in sections of shock frozen, cryosubstituted material using the laser-microprobe-mass-analyser (LAMMA). This combination allowed us to distinguish, both in bulk samples and on the cellular level between (i) the fraction of elements originally present in the plant before the start of the labelling, (ii) the material taken up from the labelling solution into the plant and (iii) any material released by the plant into the labelling solution. In single-root labelling experiments, roots of three-year-old spruce trees, grown in nursery soil, were exposed to various pH conditions. The exchange of Mg and Ca with the labelling solution was nearly 100% in the cell walls of the mycorrhized finest roots. This exchange was only slightly affected by a step down to pH 3.5. The absolute Mg and Ca content in the cell walls was moderately reduced by incubation at pH 3.5 and strongly reduced in the presence of Al at this pH. After a pH 3.5 and 2 mM Al treatment we found Al in the xylem cell walls and the cortex cell lumina at elevated concentrations. To analyse the combined effect of high Al and high proton concentrations on the long-range transport, we used a “split-root system”. The root mass of an intact two-year-old spruce tree, grown in mineral soil, was divided into even parts and both halves incubated in solutions with two sets of different stable isotopes of Mg and Ca (side A: no Al, 25Mg and 42Ca; side B: +Al, 26Mg and 44Ca) and 41K on both sides. We observed a large uptake of Mg, Ca and K into the plant and a pronounced release. The net uptake of all three elements was lower from the Al-doted solution. In cross-sections of the apical shoot we found after seven-day labelling period about 60–70% of the Mg and Ca and 30% of the K content in the xylem cell walls originating from both labelling solutions. The clear majority of the Mg and Ca label originated from the Al-doted side.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2285
    Keywords: Aluminum ; Calcium ; Fine roots ; Microbeam analysis ; Picea abies ; Soil acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A novel stable isotope labelling procedure for microbeam analysis was developed to monitor exchange and uptake of nutrients, primarily Mg, K and Ca, by root tips at the cellular level. Initially root samples were analysed from 2-year-old spruce trees, originating both from a nursery and from a polluted forest site, (1) for the cortex cell wall accessibility and nutrient binding properties, (2) for the influence of low pH and elevated aluminum concentrations on Ca binding to cortex cell walls, and (3) for long-range transport into the secondary xylem, proximal to the labelled root tip. In nursery control plants, Ca is localized mainly in the apoplast of the cortex. Exchange of Mg, K, Ca in the cell wall of the cortex and the primary xylem with label in incubation solutions is almost completed to equilibration within 30 min. In the secondary xylem we could detect Mg, K, and Ca from labelling solutions in minute amounts after 30 min, and as a major fraction after 48 h. This indicates that stable isotope labelling can be used to study both ion-exchange properties of the apoplast and long-range transport. Slight acidification of the labelling incubation media to pH 4.5 reduced Ca binding to the cortex cell walls slightly, but acidification to the extreme value of pH 2.3 reduced binding 41%. A combination of pH 4.5 and increased free aluminum reduced the binding by 83%. In a preliminary attempt to analyse the nutrient binding capability of the root-tip apoplast from pollution affected trees, we exposed fine roots of 2-year-old spruce from an acidified and polluted site showing typical low levels of Ca and Mg in the cortical cell walls to Ca-enriched media. Under these conditions the Ca content of cortex cell walls doubled upon incubation at pH 4.7, reaching 40% of the total binding capacity of our nursey control plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...