All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • Parametric instability  (1)
  • 1
    Publication Date: 2017-01-04
    Description: Author Posting. © Cambridge University Press, 2003. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 481 (2003): 329-353, doi:10.1017/S0022112003004051.
    Description: In this article we investigate time-periodic shear flows in the context of the two-dimensional vorticity equation, which may be applied to describe certain large-scale atmospheric and oceanic flows. The linear stability analyses of both discrete and continuous profiles demonstrate that parametric instability can arise even in this simple model: the oscillations can stabilize (destabilize) an otherwise unstable (stable) shear flow, as in Mathieu's equation (Stoker 1950). Nonlinear simulations of the continuous oscillatory basic state support the predictions from linear theory and, in addition, illustrate the evolution of the instability process and thereby show the structure of the vortices that emerge. The discovery of parametric instability in this model suggests that this mechanism can occur in geophysical shear flows and provides an additional means through which turbulent mixing can be generated in large-scale flows.
    Description: F.P.’s and G.F.’s research was supported by grants from NSF, OPP- 9910052 and OCE-0137023. J.P.’s research is supported in part by a grant from NSF, OCE-9901654.
    Keywords: Time-periodic shear flows ; Parametric instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 349820 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...