All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2019-07-18
    Description: It is by no means a simple task to retrieve storm electric fields from an aircraft instrumented with electric field mill sensors. The presence of the aircraft distorts the ambient field in a complicated way. Before retrievals of the storm field can be made, the field mill measurement system must be "calibrated". In other words, a relationship between impressed (i.e., ambient) electric field and mill output must be established. If this relationship can be determined, it is mathematically inverted so that ambient field can be inferred from the mill outputs. Previous studies have primarily focused on linear theories where the relationship between ambient field and mill output is described by a "calibration matrix" M. Each element of the matrix describes how a particular component of the ambient field is enhanced by the aircraft. For example the product M(sub ix), E(sub x), is the contribution of the E(sub x) field to the i(th) mill output. Similarly, net aircraft charge (described by a "charge field component" E(sub q)) contributes an amount M(sub iq)E(sub q) to the output of the i(th) sensor. The central difficulty in obtaining M stems from the fact that the impressed field (E(sub x), E(sub y), E(sub z), E(sub q) is not known but is instead estimated. Typically, the aircraft is flown through a series of roll and pitch maneuvers in fair weather, and the values of the fair weather field and aircraft charge are estimated at each point along the aircraft trajectory. These initial estimates are often highly inadequate, but several investigators have improved the estimates by implementing various (ad hoc) iterative methods. Unfortunately, none of the iterative methods guarantee absolute convergence to correct values (i.e., absolute convergence to correct values has not been rigorously proven). In this work, the mathematical problem is solved directly by analytic means. For m mills installed on an arbitrary aircraft, it is shown that it is possible to solve for a single 2m-vector that provides all other needed variables (i.e., the unknown fair weather field, the unknown aircraft charge, and the unknown matrix M). Numerical tests of the solution, effects of measurement errors, and studies of solution non-uniqueness are ongoing as of this writing.
    Keywords: Numerical Analysis
    Type: Fall American Geophysical Union Conference; Dec 08, 2003 - Dec 12, 2003; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Numerical Analysis
    Type: M11-1070 , GOES-R Risk Reduction Annual Review; Sep 21, 2011 - Sep 23, 2011; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...