ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nitrogen  (2)
  • Storage
  • Springer  (3)
  • 1985-1989  (3)
  • 1
    ISSN: 1432-1939
    Keywords: Biennial plants ; Carbon partitioning ; Nitrogen partitioning ; Storage ; Harvest index
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Growth and nitrogen partitioning were investigated in the biennial monocarp Arctium tomentosum in the field, in plants growing at natural light conditions, in plants in which approximately half the leaf area was removed and in plants growing under 20% of incident irradiation. Growth quantities were derived from splined cubic polynomial exponential functions fitted to dry matter, leaf area and nitrogen data. Main emphasis was made to understanding of the significance of carbohydrate and nitrogen storage of a large tuber during a 2-years' life cycle, especially the effect of storage on biomass and seed yield in the second season. Biomass partitioning favours growth of leaves in the first year rosette stage. Roots store carbohydrates at a constant rate and increase storage of carbohydrates and nitrogen when the leaves decay at the end of the first season. In the second season the reallocation of carbohydrates from storage is relatively small, but reallocation of nitrogen is very large. Carbohydrate storage just primes the growth of the first leaves in the early growing season, nitrogen storage contributes 20% to the total nitrogen requirement during the 2nd season. The efficiency of carbohydrate storage for conversion into new biomass is about 40%. Nitrogen is reallocated 3 times in the second year, namely from the tuber to rosette leaves and further to flower stem leaves and eventually into seeds. The harvest index for nitrogen is 0.73, whereas for biomass it is only 0.19.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Mimicry ; Nitrogen ; Herbivory ; Mistletoe ; Australia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Leaves from many misletoe species in Australia strongly resemble those of their hosts. This cryptic mimicry has been hypothesized to be a means of reducing the likelihood of mistletoe herbivory by vertebrates. Leaf Kjeldahl nitrogen contents (a measure of reduced nitrogen and thus amines, amino acids and protein levels) of mistletoes and their hosts were measured on 48 mimetic and nonmimetic host-parasite pairs to evaluate hypotheses concerning the significance of crysis versus noncrypsis. The hypothesis that mistletoes mimicking host leaves should have higher leaf nitrogen levels than their hosts is supported; they may be gaining a selective advantage through crypsis (reduced herbivory). The second hypothesis that mistletoes which do not mimic their hosts should have lower leaf nitrogen levels than their hosts is also supported; they may be gaining a selective advantage through noncrypsis (reduced herbivory resulting from visual advertisement of their reduced nutritional status).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Forest decline, Spruce (Picea abies) ; Nitrogen ; Magnesium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A declining Picea abies (L.) Karst. stand produced as much foliage and branches as a healthy stand but less stemwood at a similar leaf area index and climate. Nutrient analyses revealed that most biomass components at the declining site had lower concentrations of calcium and magnesium, but similar nitrogen and potassium (except for lower potassium in younger needles) and higher phosphorus, manganese and aluminum than the respective components at the healthy site. Comparison of these data with the results from studies on the nutrition and growth of P. abies seedlings (Ingestad 1959) led to the conclusion that the healthy stand is in a balanced nutritional state, while trees at the declining stand have only 56% of the foliar magnesium concentration required to permit growth at a rate which could be achieved at their nitrogen status. It appears that acidic deposition, which involves an input of nitrogen and a leaching of cations from the soil, causes an imbalance in the availability of nitrogen and magnesium. Growth is eventually reduced as magnesium becomes limiting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...