ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nicotiana (photosynthesis)  (2)
  • Storage
  • 1990-1994  (3)
  • 1
    ISSN: 1432-2048
    Keywords: Nicotiana (photosynthesis) ; Nitrogen ; Photosynthesis (control analysis) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of nitrogen supply during growth on the contribution of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) to the control of photosynthesis was examined in tobacco (Nicotiana tabacum L.). Transgenic plants transformed with antisense rbcS to produce a series of plants with a progressive decrease in the amount of Rubisco were used to allow the calculation of the flux-control coefficient of Rubisco for photosynthesis (CR). Several points emerged from the data: (i) The strength of Rubisco control of photosynthesis, as measured by CR, was altered by changes in the short-term environmental conditions. Generally, CR was increased in conditions of increased irradiance or decreased CO2. (ii) The amount of Rubisco in wild-type plants was reduced as the nitrogen supply during growth was reduced and this was associated with an increase in CR. This implied that there was a specific reduction in the amount of Rubisco compared with other components of the photosynthetic machinery. (iii) Plants grown with low nitrogen and which had genetically reduced levels of Rubisco had a higher chlorophyll content and a lower chlorophyll a/b ratio than wild-type plants. This indicated that the nitrogen made available by genetically reducing the amount of Rubisco had been re-allocated to other cellular components including light-harvesting and electron-transport proteins. It is argued that there is a “luxury” additional investment of nitrogen into Rubisco in tobacco plants grown in high nitrogen, and that Rubisco can also be considered a nitrogen-store, all be it one where the opportunity cost of the nitrogen storage is higher than in a non-functional storage protein (i.e. it allows for a slightly higher water-use efficiency and for photosynthesis to respond to temporarily high irradiance).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Light climate ; Nicotiana (photosynthesis) ; Photosynthesis ; Ribulose 1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant (tobacco, antisense DNA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tobacco (Nicotiana tabacum L.) plants transformed with ‘antisense’ rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 μmol·m−2·s−1 irradiance, and at 28°C at 100, 300 and 1000 μmol·m−2·s−1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 μmol·m−2·s−1)-grown plants are exposed to high (750–1000 μmol·m−2·s−1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 μmol·m−2·s−1) are suddenly exposed to high and saturating irradiance (1500–2000 μmol·m−2·s−1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in “sun” leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the “light” reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) ‘Antisense’ plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Storage ; Accumulation ; Reserve formation ; Storage structure ; Biennial plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four biennial species (Arctium tomentosum, Cirsium vulgare, Dipsacus sylvester and Daucus carota) which originate from habitats of different nutrient availability were investigated in a 2-year experiment in a twofactorial structured block design varying light (natural daylight versus shading) and fertilizer addition. The experiment was designed to study storage as reserve formation (competing with growth) or as accumulation (see Chapin et al. 1990). We show that (i) the previous definitions of storage excluded an important process, namely the formation of storage tissue. Depending on species, storage tissue and the filling process can be either a process of reserve formation, or a process of accumulation. (ii) In species representing low-resource habitats, the formation of a storage structure competes with other growth processes. Growth of storage tissue and filling with storage products is an accumulation process only in the high-resource plant Arctium tomentosum. We interpret the structural growth of low-resource plants in terms of the evolutionary history of these species, which have closely related woody species in the Mediterranean area. (iii) The use of storage products for early leaf growth determines the biomass development in the second season and the competitive ability of this species during growth with perennial species. (iv) The high-resource plant Arctium has higher biomass development under all conditions, i.e. plants of low-resource habitats are not superior under low-resource conditions. The main difference between high- and low-resource plants is that low-resource plants initiate flowering at a lower total plant internal pool size of available resources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...