ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The solar cycle (SC) effect in the lower atmosphere has been linked observationally to the Quasi-biennial Oscillation (QBO), which is generated primarily by small-scale gravity waves. Salby and Callaghan analyzed the QBO observations covering more than 40 years and found that it contains a relatively large SC signature at 20 km. Following up on a 2D study with our Numerical Spectral Model (NSM), we discuss here a 3D study in which we simulated the QBO under the influence of the SC. For a SC period of 10 years, the amplitude of the relative variations of radiative forcing is taken to vary from 0.2% at the surface to 2% at 50 km to 20% at 100 km and above. This model produces in the lower stratosphere a relatively large modulation of the QBO, which appears to be related to the SC and is in qualitative agreement with the observations. Further studies are needed, (1) to determine whether the effect is real and the results are robust and (2) to explore the mechanism(s) that may amplify the SC effect. Quasi-decadal oscillations, generated internally by the QBO interacting with the seasonal cycles, may interfere with or aid the SC effect.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-15
    Description: A camera designed for use in flight has been developed by the NACA Lewis laboratory t o photograph cloud droplets in their natural suspension in the atmosphere. A magnification of 32 times is employed to distinguish for measurement purposes all sizes of droplets greater than 5 microns in diameter. Photographs can be taken at flight speeds up to 150 miles per hour at 5-second intervals, A field area of 0.025 square inch is photographed on 7-inch-width roll film accommodating 40 exposures on an 18-foot length. Flight tests conducted in cumulus clouds have shown that approximate droplet-size distribution studies can be obtained and that a studies of the microstructure and physics of clouds can be made with the camera.
    Keywords: Meteorology and Climatology
    Type: NACA-RM-E50K01a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in water restricted scenarios. For example, the mean WP across 38 years of maize production was 1.1 kg/cu m for non-optimized irrigation schedules with 50 mm of seasonal available water and 2.1 kg/cu m optimized ion schedules, a 91% improvement in WP with optimized irrigation schedules. The framework described in this work could be used to estimate WP for regional to global assessments, as well as derive location specific irrigation guidance.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN44930 , Agricultural and Forest Meteorology (ISSN 0168-1923); 243; 84-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A statistical survey and a preliminary analysis are made of icing data collected from scheduled flights over the United States and Canada from November 1951 to June 1952 by airline aircraft equipped with NACA pressure-type icing-rate meters. This interim report presents information obtained from a continuing program sponsored by the NACA with the cooperation of the airlines. An analysis of over 600 icing encounters logged by three airlines operating in the United States, one operating in Canada and one operating up the coast to Alaska, is presented. The icing conditions encountered provided relative frequencies of many icing-cloud variables, such as horizontal extent, vertical thickness, temperatures, icing rate, liquid-water content, and total ice accumulation. Liquid-water contents were higher than data from earlier research flights in layer-type clouds but slightly lower than previous data from cumulus clouds. Broken-cloud conditions, indicated by intermittent icing, accounted for nearly one-half of all the icing encounters. About 90 percent of the encounters did not exceed a distance of 120 miles, and continuous icing did not exceed 50 miles for 90 percent of the unbroken conditions. Icing cloud thicknesses measured during climbs and descents were less than 4500 feet for 90 percent of the vertical cloud traverses.
    Keywords: Meteorology and Climatology
    Type: NACA-RM-E55F28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: This chapter describes methods developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to implement a transdisciplinary, systems-based approach for regional-scale (local to national) integrated assessment of agricultural systems under future climate, biophysical, and socio-economic conditions. These methods were used by the AgMIP regional research teams in Sub-Saharan Africa and South Asia to implement the analyses reported in their respective chapters of this book. Additional technical details are provided in Appendix 1.The principal goal that motivates AgMIP's regional integrated assessment (RIA) methodology is to provide scientifically rigorous information needed to support improved decision-making by various stakeholders, ranging from local to national and international non-governmental and governmental organizations.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN22637
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregn, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8896 , Agricultural and Forest Meteorology; 170; 166-182
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...