ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The use of a scroll decanter centrifuge for the removal and dewatering of affinity-flocculated yeast cell debris from a crude homogenate is described. Laboratory shear modulus measurements were used to compare the structure of flocculated and nonflocculated sediments and to indicate the dewatering conditions under which the sediment could be discharged from the centrifuge. The structure of the flocculated sediment was such that a dry beach could be used within the centrifuge while still being able to discharge the solids. The scroll decanter performance for recovery and dewatering of the flocculated homogenate was found to be independent of feed flow rate and differential scroll rate. Eighty-five percent of the solid material was recovered from the flocculated homogenate while the extent of sediment dewatering resulted in the loss of only 7% of the soluble protein in the sediment. The supernatant clarity matched that achieved by low-gravity laboratory centrifugation studies.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Changing hydro-climatic and socioeconomic conditions increasingly put pressure on fresh water resources and are expected to aggravate water scarcity conditions towards the future. Despite numerous calls for risk-based water scarcity assessments, a global-scale framework that includes UNISDR's definition of risk does not yet exist. This study provides a first step towards such a risk based assessment, applying a Gamma distribution to estimate water scarcity conditions at the global scale under historic and future conditions, using multiple climate change and population growth scenarios. Our study highlights that water scarcity risk, expressed in terms of expected annual exposed population, increases given all future scenarios, up to greater than 56.2% of the global population in 2080. Looking at the drivers of risk, we find that population growth outweigh the impacts of climate change at global and regional scales. Using a risk-based method to assess water scarcity, we show the results to be less sensitive than traditional water scarcity assessments to the use of fixed threshold to represent different levels of water scarcity. This becomes especially important when moving from global to local scales, whereby deviations increase up to 50% of estimated risk levels.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN29972 , Environmental Research Letters; 11; 2; 024006
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Nio- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (〉 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity conditions, and the relative developments of water scarcity impacts under changing socioeconomic conditions, we suggest that there is potential for ENSO-based adaptation and risk reduction that could be facilitated by more research on this emerging topic.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN25973 , Hydrology and Earth System Sciences; 19; 10; 4081-4098
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...