ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L10601, doi:10.1029/2012GL051861.
    Description: A simple barotropic quasi-geostrophic model is used to demonstrate that instabilities radiated from an unstable eastern boundary current can generate zonal striations in the ocean interior with realistic wavelengths and amplitudes. Nonlinear transfer of energy from the more unstable trapped modes is important for radiating modes to overcome friction. The dynamics shown here are generic enough to point to the eastern boundary current as a likely source of the observed striations extending from oceanic eastern boundaries.
    Description: Y-S Fellowship when this study was done, and by NASA grant NNX12AD47G when this paper was prepared. M. Spall is supported by grant OCE-0926656. G. Flierl is supported by grant OCE-0752346.
    Description: 2012-11-16
    Keywords: Rossby waves ; Barotropic instability ; Eastern boundary currents ; Radiating instabilities ; Zonal jets ; Zonal striations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2017-01-04
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2011
    Description: Eastern oceanic boundary currents are subject to hydrodynamic instability, generate small scale features that are visible in satellite images and may radiate westward into the interior, where they can be modified by the large-scale circulations. This thesis studies the stability of an eastern boundary current with and without the large-scale flow influence in an idealized framework represented by barotropic quasi-geostrophic dynamics. The linear stability analysis of a meridional current with a continuous velocity profile shows that meridional eastern and western boundary currents support a limited number of radiating modes with long meridional and zonal wavelengths and small growth rates. However, the linearly stable, long radiating modes of an eastern boundary current can become nonlinearly unstable by resonating with short trapped unstable modes. This phenomenon is clearly demonstrated in the weakly nonlinear simulations. Results suggest that linearly stable longwave modes deserve more attention when the radiating instability of a meridional boundary current is considered. A large-scale flow affects the short trapped unstable mode and long radiating mode through different mechanisms. The large-scale flow modifies the structure of the boundary current to stabilize or destabilize the unstable modes, leading to a meridionally localized maximum in the perturbation kinetic energy field. The shortwave mode is accelerated or decelerated by the meridional velocity adjustment of the large-scale flow to have an elongated or a squeezed meridional structure, which is confirmed both in a linear WKB analysis and in nonlinear simulations. The squeezed or elongated unstable mode detunes the nonlinear resonance with the longwave modes, which then become less energetic. These two modes show different meridional structures in kinetic energy field because of the different mechanisms. In spite of the model simplicity, these results can potentially explain the formation of the zonal jets observed in altimeter data, and indicate the influence of the large-scale wind-driven circulation on eastern boundary upwelling systems in the real ocean. Studies with more realistic configurations remain future challenges.
    Keywords: Meridional overturning circulation ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-07
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 35 (2018): 281-297, doi:10.1175/JTECH-D-17-0076.1.
    Description: The wavenumber spectrum of sea surface height (SSH) is an important indicator of the dynamics of the ocean interior. While the SSH wavenumber spectrum has been well studied at mesoscale wavelengths and longer, using both in situ oceanographic measurements and satellite altimetry, it remains largely unknown for wavelengths less than ~70 km. The Surface Water Ocean Topography (SWOT) satellite mission aims to resolve the SSH wavenumber spectrum at 15–150-km wavelengths, which is specified as one of the mission requirements. The mission calibration and validation (CalVal) requires the ground truth of a synoptic SSH field to resolve the targeted wavelengths, but no existing observational network is able to fulfill the task. A high-resolution global ocean simulation is used to conduct an observing system simulation experiment (OSSE) to identify the suitable oceanographic in situ measurements for SWOT SSH CalVal. After fixing 20 measuring locations (the minimum number for resolving 15–150-km wavelengths) along the SWOT swath, four instrument platforms were tested: pressure-sensor-equipped inverted echo sounders (PIES), underway conductivity–temperature–depth (UCTD) sensors, instrumented moorings, and underwater gliders. In the context of the OSSE, PIES was found to be an unsuitable tool for the target region and for SSH scales 15–70 km; the slowness of a single UCTD leads to significant aliasing by high-frequency motions at short wavelengths below ~30 km; an array of station-keeping gliders may meet the requirement; and an array of moorings is the most effective system among the four tested instruments for meeting the mission’s requirement. The results shown here warrant a prelaunch field campaign to further test the performance of station-keeping gliders.
    Description: The authors would like to acknowledge the funding sources: the SWOT mission (JW, LF, DM); NASA Projects NNX13AE32G, NNX16AH76G, and NNX17AH54G (TF); and NNX16AH66G and NNX17AH33G (BQ). AF and MF were funded by the Keck Institute for Space Studies (which is generously supported by the W. M. Keck Foundation) through the project Science-driven Autonomous and Heterogeneous Robotic Networks: A Vision for Future Ocean Observations (http://kiss.caltech.edu/?techdev/seafloor/seafloor.html).
    Description: 2018-08-07
    Keywords: Altimetry ; In situ oceanic observations ; Profilers, oceanic ; Satellite observations ; Sensitivity studies ; Planning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...