ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: An analysis was conducted for into mesh oil jet lubrication with an arbitrary offset and inclination angle from the pitch point for the case where the oil jet velocity is equal to or less than pitch line velocity. The analysis includes the case for the oil jet offset from the pitch point in the direction of the pinion and where the oil jet is inclined to intersect the common pitch point. Equations were developed for the minimum oil jet velocity required to impinge on the pinion or gear and the optimum oil jet velocity to obtain the maximum impingement depth.
    Keywords: MECHANICAL ENGINEERING
    Type: ASME; 713-718
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
    Keywords: MECHANICAL ENGINEERING
    Type: ASME, Transactions, Journal of Vibration and Acoustics (ISSN 0739-3717); 113; 333-344
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: An analysis was conducted for oil jet lubrication on the disengaging side of a gear mesh. Results of the analysis were computerized and used to determine the oil jet impingement depth for several gear ratios and oil jet to pitch line velocity ratios. An experimental program was conducted on the NASA gear test rig using high-speed photography to experimentally determine the oil jet impingement depth on the disengaging side of mesh. Impingement depth reaches a maximum at gear ratio near 1.5 where chopping by the leading gear tooth limits the impingement depth. The pinion impingement depth is zero above a gear ratio of 1.172 for a jet velocity to pitch time velocity ratio of 1.0 and is similar for other velocity ratios. The impingement depth for gear and pinion are equal and approximately one-half the maximum at a gear ratio of 1.0. Impingement depth on either the gear or pinion many be improved by relocation of the jet from the pitch line or by changing the jet angle. Results of the analysis were verified by experimental results using a high-speed camera and a well lighted oil jet.
    Keywords: MECHANICAL ENGINEERING
    Type: ASME PAPER 77-DET-104 , Design Engineering Technical Conference; Sept. 26-30, 1977; Chicago, IL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-27
    Description: The design of a standard gear mesh is treated with the objective of minimizing the gear size for a given ratio, pinion torque, and allowable tooth strength. Scoring, pitting fatigue, bending fatigue, and the kinematic limits of contact ratio and interference are considered. A design space is defined in terms of the number of teeth on the pinion and the diametral pitch. This space is then combined with the objective function of minimum center distance to obtain an optimal design region. This region defines the number of pinion teeth for the most compact design. The number is a function of the gear ratio only. A design example illustrating this procedure is also given.
    Keywords: MECHANICAL ENGINEERING
    Type: ASME PAPER 81-DET-115 , American Society of Mechanical Engineers, Design Engineering Technical Conference; Sept. 20-23, 1981; Hartford, CT
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-18
    Description: Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.
    Keywords: MECHANICAL ENGINEERING
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-07
    Description: An analytical method for predicting surface fatigue life of gears was presented. General statistical methods were outlined, showing the application of the general methods to a simple gear mesh. Experimentally determined values for constants in the life equation were given. Comparison of the life theory with test results and AGMA standards was made. Gear geometry pertinent to life calculations was reviewed.
    Keywords: MECHANICAL ENGINEERING
    Type: Advanced Power Transmission Technol.; p 421-434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-07
    Description: The penetration depth onto the tooth flank of a jet of oil at different velocities pointed at the pitch line on the outgoing side of mesh was determined. The analysis determines the impingement depth for both the gear and the pinion. It includes the cases for speed increasers and decreasers as well as for one to one gear ratio. In some cases the jet will strike the loaded side of the teeth, and in others it will strike the unloaded side of the teeth. In nearly all cases the top land will be cooled regardless of the penetration depth, and postimpingement oil spray will usually provide adequate amounts of oil for lubrication but is marginal or inadequate for cooling.
    Keywords: MECHANICAL ENGINEERING
    Type: Advanced Power Transmission Technol.; p 461-476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-07
    Description: A gear tooth temperature analysis was performed using a finite element method combined with a calculated heat input, a calculated oil jet impingement depth, and estimated heat transfer coefficients for the different parts of the gear tooth that are oil cooled and air cooled. Experimental measurements of gear tooth average surface temperature and gear tooth instantaneous surface temperature were made with a fast response, infrared, radiometric microscope. Increasing oil pressure has a significant effect on both average surface temperature and peak surface temperature at loads above 1895 N/cm(1083 lb/in) and speeds of 10,000 and 7500 rpm. Both increasing speed (from 5000 to 10,000 rpm) at constant speed cause a significant rise in the average surface temperature and in the instantaneous peak surface temperatures on the gear teeth. The oil jet pressure required to provide the best cooling for gears is the pressure required to obtain full gear tooth impingement. Calculated results for gear tooth temperatures were close to experimental results for various oil jet impingement depths for identical operating conditions.
    Keywords: MECHANICAL ENGINEERING
    Type: Advanced Power Transmission Technol.; p 477-490
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-16
    Description: A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.
    Keywords: MECHANICAL ENGINEERING
    Type: AD-A290195 , ARL-TR-475 , E-8914 , NAS 1.15:106623 , NASA-TM-106623 , Joint Propulsion Conference; Jun 27, 1994 - Jun 29, 1994; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Spur gear endurance tests were conducted with six lubricants using a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 spur gears. The sixth lubricants was divided into four batches each of which had a different additive content. Lubricant tested with a phosphorus-type load carrying additive showed a statistically significant improvement in life over lubricants without this type of additive. The presence of sulfur type antiwear additives in the lubricant did not appear to affect the surface fatigue life of the gears. No statistical difference in life was produced with those lubricants of different base stocks but with similar viscosity, pressure-viscosity coefficients and antiwar additives. Gears tested with a 0.1 wt pct sulfur and 0.1 wt pct phosphorus EP additives in the lubricant had reactive films that were 200 to 400 (0.8 to 1.6 microns) thick.
    Keywords: MECHANICAL ENGINEERING
    Type: ASME PAPER 85-TRIB-14 , ASME, Transactions, Journal of Tribology (ISSN 0742-4787); 108; 468-475;
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...