ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-11
    Description: Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Mars rover Curiosity has encountered silica-enriched bedrock (as strata and as veins and associated halos of alteration) in the largely basaltic Murray Fm. of Mt. Sharp in Gale Crater. Alpha Particle X-ray Spectrometer (APXS) investigations of the Murray Fm. revealed decreasing Mg, Ca, Mn, Fe, and Al, and higher S, as silica increased (Fig. 1). A positive correlation between SiO2 and TiO2 (up to 74.4 and 1.7 wt %, respectively) suggests that these two insoluble elements were retained while acidic fluids leached more soluble elements. Other evidence also supports a silica-retaining, acidic alteration model for the Murray Fm., including low trace element abundances consistent with leaching, and the presence of opaline silica and jarosite determined by CheMin. Phosphate stability is a key component of this model because PO4 3- is typically soluble in acidic water and is likely a mobile ion in diagenetic fluids (pH less than 5). However, the Murray rocks are not leached of P; they have variable P2O5 (Fig. 1) ranging from average Mars (0.9 wt%) up to the highest values in Gale Crater (2.5 wt%). Here we evaluate APXS measurements of Murray Fm. bedrock and veins with respect to phosphate stability in acidic fluids as a test of the acidic alteration model for the Lower Mt. Sharp rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35224 , Lunar and Planetary Science Conference; 21-25 Mar. 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Alpha Particle X-ray spectrometer (APXS) on the Curiosity rover in Gale Crater [1] is the 4th such instrument to have landed on Mars [2]. Along the rover's traverse down-section toward Glenelg (through sol 102), the APXS has examined four rocks and one soil [3]. Gale rocks are geochemically diverse and expand the range of Martian rock compositions to include high volatile and alkali contents (up to 3.0 wt% K2O) with high Fe and Mn (up to 29.2% FeO*).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27938 , Lunar and Planetary Science Conference; 18-22 Mar. 2013; TheWoodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The two Miniaturized Moessbauer Spectrometers (MIMOS II) on board the two Mars Exploration Rovers Spirit and Opportunity have now been collecting important scientific data for more than four years. The spectrometers provide information about Fe-bearing mineral phases and determine Fe oxidation states. The total amount of targets analized exceeds 600, the total integration time exceeds 260 days for both rovers. Since landing, more than five half-lives of the Co-57 MB sources have past (intensity at the time of landing approx. 150 mCi). Current integration times are about 50 hours in order to achieve reasonable statistics as opposed to 8 hours at the beginning of the mission. In total, 13 different mineral phases were detected: Olivine, pyroxene, hematite, magnetite and nanophase ferric oxide were detected at both landing sites. At Gusev, ilmenite, goethite, a ferric sulfate phase and a yet unassigned phase (in the rock Fuzzy Smith) were detected. At Meridiani, jarosite, metallic iron in meteoritic samples (kamacite), troilite, and an unassigned ferric phase were detected. Jarosite and goethite are of special interest, as these minerals are indicators for water activity. In this abstract, an overview of Moessbauer results will be given, with a focus on data obtained since the last martian winter. The MER mission has proven that Moessbauer spectroscopy is a valuable tool for the in situ exploration of extraterrestrial bodies and for the study of Febearing samples. The experience gained through the MER mission makes MIMOS II a obvious choice for future missions to Mars and other targets. Currently, MIMOS II is on the scientific payload of two approved future missions: Phobos Grunt (Russian Space Agency; 2009) and ExoMars (European Space Agency; 2013).
    Keywords: Lunar and Planetary Science and Exploration
    Type: 39th Lunar and Planetary Science Conference; 10-14 Mar. 2008; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Light-toned, subsurface soil deposits have been excavated by the Mars Exploration Rover (MER) Spirit in six distinct locations along its traverse across the Columbia Hills of Gusev Crater. Samples at two of these sites have been analyzed in detail by the M ssbauer (MB) and Alpha Particle X-ray Spectrometers (APXS), providing information on iron mineralogy and elemental chemistry, respectively. These soils are referred to as "Paso Robles" class deposits.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; 12-16 Mar. 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The primary MER objectives have been successfully completed. The total integration time of all MB measurements exceeds the duration of the primary 90-sols-mission for Spirit's MB spectrometer, and approaches this value for Opportunity's MB spectrometer. Both MB spectrometers continue to accumulate valuable scientific data after three years of operation (data is available for download [13]) The identification of aqueous minerals such as goethite in Gusev crater and jarosite at Meridiani Planum by the MER Mossbauer spectrometers is strong evidence for past water activity at the two landing sites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: European Planetary Science Congress 2007; 19-24 August 2007; Potsdam; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory rover Curiosity has traversed up section through approximately 100 m of sedimentary rocks deposited in fluvial, deltaic, lacustrine, and eolian environments (Bradbury group and overlying Mount Sharp group). The Stimson formation unconformably overlies a lacustrine mudstone at the base of the Mount Sharp group and has been interpreted to be a cross-bedded sandstone of lithified eolian dunes. Unaltered Stimson sandstone has a basaltic composition similar to the average Mars crustal composition, but is more variable and ranges to lower K and higher Al. Fluids passing through alteration "halos" adjacent to fractures have altered the chemistry and mineralogy of the sandstone. Elemental mass gains and losses in the alteration halos were quantified using immobile element concentrations, i.e., Ti (taus). Alteration halos have elemental gains in Si, Ca, S, and P and large losses in Al, Fe, Mn, Mg, Na, K, Ni, and Zn. Mineralogy of the altered Stimson is dominated by Ca-sulfates, Si-rich X-ray amorphous materials along with plagioclase feldspar, magnetite, and pyroxenes. The igneous phases were less abundant in the altered sandstone with a lower pyroxene/plagioclase feldspar. Large elemental losses suggest acidic fluids initially removed these elements (Al mobile under acid conditions). Enrichments in Si, Ca, and S suggest secondary fluids (possibly alkaline) passed through these fractures leaving behind X-ray amorphous Si and Ca-sulfates. The mechanism for the large elemental gains in P is unclear. The geochemistry and mineralogy of the altered sandstone suggests a complicated diagenetic history with multiple episodes of aqueous alteration under a variety of environmental conditions (e.g., acidic, alkaline).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37384 , AGU Fall Meeting 2016; 12-16 Dec. 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Sedimentary rocks in Gale Crater on Mars indicate a varied provenance with a range of alteration and weathering [1, 2]. Geochemical trends identified in basaltic and alkalic sedimentary rocks by the Alpha Particle X-ray Spectrometer (APXS) on the Mars rover Curiosity represent a complex interplay of igneous, sedimentary, weathering, and alteration processes. Assessing the relative importance of these processes is challenging with unknown compositions for parent sediment sources and with the constraints provided by Curiosity's instruments. We therefore look to Mars analogues on Earth where higher-resolution analyses and geologic context can constrain interpretations of Gale Crater geochemical observations. We selected Maunakea (AKA Mauna Kea) and Kohala volcanoes, Hawai'i, for an analogue study because they are capped by post-shield transitional basalts and alkalic lavas (hawaiites, mugearites) with compositions similar to Gale Crater [1, 3]. Our aim was to characterize Hawaiian geochemical trends associated with igneous processes, sediment transport, weathering, and alteration. Here, we present initial results and discuss implications for selected trends observed by APXS in Gale Crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-38843 , Lunar and Planetary Science Conference; 20-24 Mar. 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...