ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-17
    Description: This first analysis of Pioneer Venus Orbiter (PVO) plasma analyzer electron measurements obtained in early 1992 during the PVO entry phase of the mission indicates the presence downstream from the terminator of a depletion or "bite out" of energetic ionosheath electrons similar to that observed on Mariner 10. There is more than one possible explanation for this energetic electron depletion. If it is due to atmospheric scattering, the electrons traveling along draped magnetic flux tubes that thread through the Venus neutral atmosphere would lose energy from impact ionization with oxygen. The cross-section for such electron impact ionization of oxygen has a peak near 100 eV, and it remains high above this energy, so atmospheric loss could provide a natural process for electrons at these energies to be selectively removed. In this case, our results are consistent with the Kar et al. (1994) study of PVO atmospheric entry ion mass spectrometer data which indicates that electron impact plays a significant role in maintaining the nightside ionosphere. Although it is appealing to interpret the energetic electron depletion in terms of direct atmospheric scattering, alternatively it could result from strong draping which connects the depletion region magnetically to the weak downstream bow shock and thereby reduces the electron source strength.
    Keywords: Lunar and Planetary Exploration
    Type: Paper 93GL02483 , Geophysical Research Letters. Selected Papers on Pioneer Venus Orbiter: Entry Phase; 20; 23; 2779-2782; NASA-TM-112700
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: A considerable fraction of atmospheric loss at Venus and Titan is in the form of plasma escape. This is due in part to the fact that the ionospheres of these unmagnetized bodies interact directly with the high speed plasmas flowing around them. The similarities of the interactions help reinforce interpretations of measurements made at each body, especially when instruments and measurement sites differ. For example, it is well established through this method that ions born in the exospheres above the ionopauses are picked up and carried away by the solar wind at Venus and the rotating plasma in Saturn's magnetosphere. On the other hand, it is more difficult to relate the observations associated with escape of cooler ionospheric plasma down the ionotails of each body. A clear example of ionospheric plasma escaping Titan was observed as it flowed down its ionotail (1). Measurements at Venus have not as yet clearly distinguished between ionospheric and pickup ion escape in the ionotail; however, cold ions detected in the distant wake at 1 AU by the CELIAS/CTOF instrument on SOHO have been interpreted as ionospheric in origin (2). An algorithm to determine ionospheric flow from Pioneer Venus aeronomical measurements is used to show that escape of cold ionospheric plasma is likely to occur. These results along with plasma flow measurements made in the ionotail of Venus are combined and compared to the corresponding flow at Titan.
    Keywords: Lunar and Planetary Exploration
    Type: Dec 06, 1998 - Dec 10, 1998; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: During the final, low solar activity phase of the Pioneer Venus mission, the Orbiter Ion Mass Spectrometer measurements found all ion species, in the midnight-dusk sector, reduced in concentration relative to that observed at solar maximum. Molecular ion species comprised a greater part of the total ion concentration as O(+) and H(+) had the greatest depletions. The nightside ionospheric states were strikingly similar to the isolated solar maximum "disappearing" ionospheres. Both are very dynamic states characterized by a rapidly drifting plasma and 30-100 eV superthermal O(+) ions.
    Keywords: Lunar and Planetary Exploration
    Type: Paper 93GL02239 , Geophysical Research Letters. Selected Papers on Pioneer Venus Orbiter: Entry Phase; 20; 23; 2735-2738; NASA-TM-112700
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...