ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (15)
  • 1990-1994  (15)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-01-25
    Description: Altitude-dependent, high radar-reflectivity surfaces on Venus are observed on most mountainous volcanic terranes above a planetary radius of about 6054 km. However, high radar-reflectivity areas also occur at lower altitudes in some impact craters and plain terranes. Pyrite (FeS2) is commonly believed to be responsible for the high radar reflectivities at high elevations on Venus, on account of large dielectric constants measured for sulfide-bearing rocks that were erroneously attributed to pyrite instead of pyrrhotite. Pentlandite-pyrrhotite assemblages may be responsible for high reflectivities associated with impact craters on the Venusian surface, by analogy with Fe-Ni sulfide deposits occurring in terrestrial astroblemes. Mixed-valence Fe(2+)-Fe(3+) silicates, including oxyhornblende, oxybiotite, and ilvaite, may contribute to high radar reflecting surfaces on mountain-tops of Venus.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 233-234
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-25
    Description: Salts believed to occur in Martian regolith imply that brines occur on Mars, which may have facilitated the oxidation of dissolved Fe(2+) ions after they were released during chemical weathering of basaltic ferromagnesian silicate and iron sulfide minerals. Calculations show that the rate of oxidation of Fe(2+) ions at -35 C in a 6M chloride-sulfate brine that might exist on Mars is about 10(exp 6) times slower that the oxidation rate of iron in ice-cold terrestrial seawater.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 231-232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The reflectance spectra of Fe(2+)-Mg(2+) disordered orthopyroxenes are relevant to surfaces of terrestrial planets onto which basaltic magma has been extruded. If cooling rates of basalt lava flows were fast, equilibrium iron intersite partitioning may not have been achieved so that abnormal enrichments of Fe(2+) ions in M1 sites would occur. The two intense pyroxene Fe(2+) site CF bands in the 1 micron and 2 micron regions would continue to dominate the the reflectance spectra so that the pyroxene composition and structure type would be readily identified in telescopic spectral profiles. However, abnormal intensification of the Fe(2+)/M1 site CF band at 1.20 microns could lead to the false identification of olivine in remote sensed spectra because in pyroxene-olivine mixtures the inflection around 1.20 microns is the only spectral feature for detecting the presence of olivine. The identification of iron-bearing plagioclase feldspars, too, would be obscured by the pyroxene Fe(2+)/M1 site CF band at 1.20 microns. Such interference would be a major problem if in situ reflectance spectra could be measured on the surface of Venus where ambient temperatures are as high as 475 C. Disordering of Fe(2+) and Mg(2+) ions comparable to that in the orthopyroxenes used in this spectral chemical study might be expected in low Ca pyroxenes occurring on the Venusian surface. Researchers conclude that Fe(2+)/M1 site spectral features need to be carefully assessed in remote-sensed spectra before deductions are made about the presence of olivine on planetary surfaces.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1990; p 253-255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Experiments demonstrated that oxidation of ferromagnesian silicates and magnetite occurs when these minerals are heated at 800 C in 1 atmosphere of CO2, under which conditions hematite is thermodynamically stable. The 30 ppm oxygen impurity in CO2 presumably facilitates the oxidation of some of the ferrous iron initially present in the crystal structures of the minerals. Mossbauer spectral measurements reveal, however, that only CO2 degraded olivine and pigeonite is hematite formed as a magnetically ordered phase at ambient temperatures. In orthopyroxene, some of the ferric iron produced by oxidation is present as nanophase hematite which, because it remains superparamagnetic until 4.2 K, must exist as particles less than or equal to 4 nm in diameter. In the calcic pyroxenes much of the oxidized ferrous iron may still remain as structural Fe3(+) in the host silicates. Some ferric iron may also be present as unit cell sized Fe2O3 inclusions in the pyroxenes, or be segregated along cleavage planes, or be coating mineral grains. In these states of aggregation, the Fe2O3 is unidentifiable by x ray diffraction and in low temperature Mossbauer spectra. Applications of this research to the surface of Venus are discussed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1990; p 207-209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Inferences from these investigations are that Fe(3+)-bearing minerals such as hematite magnesioferrite, acmite, and epidote are thermodynamically unstable, and that magnetite is the predominant mixed-valence iron oxide mineral on venus. Recently, the Fe(2+)-Fe(3+) silicate mineral laihunite was proposed to be a reaction product of olivine with the venusian atmosphere. This possibility is discussed further here. We suggest that other mixed-valence Fe(2+)-Fe(3+)-Oz-OH(-) silicates could also result from surface-atmosphere interactions on Venus. Topics discussed include the following: (1) conversion of hematite to magnetite; (2) stability of laihunite; (3) the possible existence of oxy-amphiboles and oxy-micas on Venus; and (4) other mixed-valence Fe(2+)-Fe(3+) silicates likely to exist on Venus.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus; p 15-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: Implicit in the mnemonic 'MSATT' (Mars surface and atmosphere through time) is that rates of surface processes on Mars through time should be investigated, including studies of the kinetics and mechanism of oxidative weathering reactions occurring in the Martian regolith. Such measurements are described. Two major elements analyzed in the Viking Lander XRF experiment that are most vulnerable to atmospheric oxidation are iron and sulfur. Originally, they occurred as Fe(2+)-bearing silicate and sulfide minerals in basaltic rocks on the surface of Mars. However, chemical weathering reactions through time have produced ferric- and sulfate-bearing assemblages now visible in the Martian regolith. Such observations raise several question about: (1) when the oxidative weathering reactions took place on Mars; (2) whether or not the oxidized regolith is a fossilized remnant of past weathering processes; (3) deducting chemical interactions of the ancient Martian atmosphere with its surface from surviving phases; (4) possible weathering reactions still occurring in the frozen regolith; and (5) the kinetics and mechanism of past and present-day oxidative reactions on Mars. These questions may be addressed experimentally by studying reaction rates of dissolution and oxidation of basaltic minerals, and by identifying reaction products forming on the mineral surfaces. Results for the oxidation of pyrrhotite and dissolved ferrous iron are reported.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Workshop on the Martian Surface and Atmosphere Through Time; p 26-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-29
    Description: During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Papers Presented to the Workshop on the Evolution of the Martian Atmosphere; p 3-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-25
    Description: Clay silicates, resulting from the chemical weathering of volcanic glasses and basaltic rocks of Mars, are generally believed to be major constituents of the martian regolith and atmospheric dust. Because little attention has been given to the role, if any, of Mg-bearing clay silicates on the martian surface, the crystal chemistry, stability, and reactivity of Mg-Fe smectites are examined. Partially dehydroxylated ferrian saponites are suggested to be major constituents of the surface of Mars, regulating several properties of the regolith.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., MSATT Workshop on Chemical Weathering on Mars; p 6-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-25
    Description: Perhaps the most conspicuous indication that chemical weathering has occurred on the surface of Mars is the overall color of the red planet and the spectroscopic features that identify ferric-bearing assemblages in the martian regolith. Apparently, Fe(2+) ions in primary minerals in parent igneous rocks on the martian surface have been oxidized to ferric iron, which occurs in degradation products that now constitute the regolith. The mineralogy of the unweathered igneous rocks prior to weathering on the martian surface is reasonably well constrained, mainly as a result of petrographic studies of the SNC meteorites. However, the alteration products resulting from oxidative weathering of these rocks are less well-constrained. The topics covered include the following: primary rocks subjected to chemical weathering; dissolution processes; oxidation of dissolved Fe(2+); mechanism of polymerization of hydrous ferric oxides; terrestrial occurrences of ferromagnesian smectites; and dehydroxylated Mg-Fe smectites on Mars.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., MSATT Workshop on Chemical Weathering on Mars; p 8-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Ferric smectites and ferrihydrite may be common alteration products of igneous lithologies on Mars, and experiments involving montmorillonite enriched with Fe(3+) support the likelihood of ferric smectites on Mars. Mossbauer spectroscopy has been used to identify ferrihydrite (Fe4(O,OH,H2O)12) as the primary ferric material in Fe(3+)-doped montmorillonite. Ferrihydrite is especially interesting due to its role as a precursor in the formation of hematite and goethite. Reflectance spectroscopy in the visible and infrared regions are coupled with Mossbauer spectroscopy in this study to characterize the ferric material in montmorillonites containing Fe(3+), as well as carbonates or sulfates, in the interlayer region.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 115-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...