ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-08-16
    Description: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into several distinct lineages. Two key transcription factors, Runx2 and peroxisome proliferator-activated receptor gamma (PPARgamma), drive MSCs to differentiate into either osteoblasts or adipocytes, respectively. How these two transcription factors are regulated in order to specify these alternate cell fates remains a pivotal question. Here we report that a 14-3-3-binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2-dependent gene transcription while repressing PPARgamma-dependent gene transcription. By modulating TAZ expression in model cell lines, mouse embryonic fibroblasts, and primary MSCs in culture and in zebrafish in vivo, we observed alterations in osteogenic versus adipogenic potential. These results indicate that TAZ functions as a molecular rheostat that modulates MSC differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hong, Jeong-Ho -- Hwang, Eun Sook -- McManus, Michael T -- Amsterdam, Adam -- Tian, Yu -- Kalmukova, Ralitsa -- Mueller, Elisabetta -- Benjamin, Thomas -- Spiegelman, Bruce M -- Sharp, Phillip A -- Hopkins, Nancy -- Yaffe, Michael B -- CA042063/CA/NCI NIH HHS/ -- GM60594/GM/NIGMS NIH HHS/ -- GM68762/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1074-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E18-580, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099986" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; Animals ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/pharmacology ; Cell Differentiation ; Cell Line ; Core Binding Factor Alpha 1 Subunit ; Gene Expression Regulation, Developmental ; Humans ; Mesenchymal Stromal Cells/*cytology/physiology ; Mice ; Neoplasm Proteins/metabolism ; Oligonucleotides, Antisense ; Osteoblasts/*cytology ; Osteocalcin/genetics ; Osteogenesis ; PPAR gamma/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*physiology ; RNA, Small Interfering ; Transcription Factors/chemistry/genetics/metabolism/*physiology ; Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/pharmacology ; Zebrafish ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-08-26
    Description: Chromosomal translocations that encode fusion oncoproteins have been observed consistently in leukemias/lymphomas and sarcomas but not in carcinomas, the most common human cancers. Here, we report that t(2;3)(q13;p25), a translocation identified in a subset of human thyroid follicular carcinomas, results in fusion of the DNA binding domains of the thyroid transcription factor PAX8 to domains A to F of the peroxisome proliferator-activated receptor (PPAR) gamma1. PAX8-PPARgamma1 mRNA and protein were detected in 5 of 8 thyroid follicular carcinomas but not in 20 follicular adenomas, 10 papillary carcinomas, or 10 multinodular hyperplasias. PAX8-PPARgamma1 inhibited thiazolidinedione-induced transactivation by PPARgamma1 in a dominant negative manner. The experiments demonstrate an oncogenic role for PPARgamma and suggest that PAX8-PPARgamma1 may be useful in the diagnosis and treatment of thyroid carcinoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kroll, T G -- Sarraf, P -- Pecciarini, L -- Chen, C J -- Mueller, E -- Spiegelman, B M -- Fletcher, J A -- CA75425/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1357-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA. tkroll@rics.bwh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958784" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma, Follicular/*genetics/metabolism ; Adenoma/genetics/metabolism ; Adult ; Aged ; Carcinoma, Papillary/genetics/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Child ; DNA-Binding Proteins/chemistry/genetics/pharmacology/*physiology ; Humans ; Middle Aged ; *Nuclear Proteins ; Oncogene Proteins, Fusion/chemistry/genetics/*physiology ; Paired Box Transcription Factors ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*physiology ; Response Elements ; Thiazoles/pharmacology ; *Thiazolidinediones ; Thyroid Neoplasms/*genetics/metabolism ; Trans-Activators/chemistry/genetics/pharmacology/*physiology ; Transcription Factors/chemistry/genetics/pharmacology/*physiology ; Transcription, Genetic ; Transcriptional Activation ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...