ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-05-05
    Description: The global endemic of cardiovascular diseases calls for improved risk assessment and treatment. Here, we describe an association between myocardial infarction (MI) and a common sequence variant on chromosome 9p21. This study included a total of 4587 cases and 12,767 controls. The identified variant, adjacent to the tumor suppressor genes CDKN2A and CDKN2B, was associated with the disease with high significance. Approximately 21% of individuals in the population are homozygous for this variant, and their estimated risk of suffering myocardial infarction is 1.64 times as great as that of noncarriers. The corresponding risk is 2.02 times as great for early-onset cases. The population attributable risk is 21% for MI in general and 31% for early-onset cases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helgadottir, Anna -- Thorleifsson, Gudmar -- Manolescu, Andrei -- Gretarsdottir, Solveig -- Blondal, Thorarinn -- Jonasdottir, Aslaug -- Jonasdottir, Adalbjorg -- Sigurdsson, Asgeir -- Baker, Adam -- Palsson, Arnar -- Masson, Gisli -- Gudbjartsson, Daniel F -- Magnusson, Kristinn P -- Andersen, Karl -- Levey, Allan I -- Backman, Valgerdur M -- Matthiasdottir, Sigurborg -- Jonsdottir, Thorbjorg -- Palsson, Stefan -- Einarsdottir, Helga -- Gunnarsdottir, Steinunn -- Gylfason, Arnaldur -- Vaccarino, Viola -- Hooper, W Craig -- Reilly, Muredach P -- Granger, Christopher B -- Austin, Harland -- Rader, Daniel J -- Shah, Svati H -- Quyyumi, Arshed A -- Gulcher, Jeffrey R -- Thorgeirsson, Gudmundur -- Thorsteinsdottir, Unnur -- Kong, Augustine -- Stefansson, Kari -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1491-3. Epub 2007 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, IS-101 Reykjavik, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17478679" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Aged ; Case-Control Studies ; Chromosome Mapping ; Chromosomes, Human, Pair 9/*genetics ; Coronary Artery Disease/genetics ; Female ; Genes, p16 ; *Genetic Predisposition to Disease ; *Genetic Variation ; Genotype ; Haplotypes ; Heterozygote ; Homozygote ; Humans ; Linkage Disequilibrium ; Male ; Middle Aged ; Myocardial Infarction/*genetics ; *Polymorphism, Single Nucleotide ; Risk Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-18
    Description: Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five-one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes-have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Augustine -- Steinthorsdottir, Valgerdur -- Masson, Gisli -- Thorleifsson, Gudmar -- Sulem, Patrick -- Besenbacher, Soren -- Jonasdottir, Aslaug -- Sigurdsson, Asgeir -- Kristinsson, Kari Th -- Jonasdottir, Adalbjorg -- Frigge, Michael L -- Gylfason, Arnaldur -- Olason, Pall I -- Gudjonsson, Sigurjon A -- Sverrisson, Sverrir -- Stacey, Simon N -- Sigurgeirsson, Bardur -- Benediktsdottir, Kristrun R -- Sigurdsson, Helgi -- Jonsson, Thorvaldur -- Benediktsson, Rafn -- Olafsson, Jon H -- Johannsson, Oskar Th -- Hreidarsson, Astradur B -- Sigurdsson, Gunnar -- DIAGRAM Consortium -- Ferguson-Smith, Anne C -- Gudbjartsson, Daniel F -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- 077016/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- G9723500/Medical Research Council/United Kingdom -- K08 AR055688/AR/NIAMS NIH HHS/ -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U106179474/Medical Research Council/United Kingdom -- MC_U127592696/Medical Research Council/United Kingdom -- R01 DK029867/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):868-74. doi: 10.1038/nature08625.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland. kong@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016592" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Binding Sites ; Breast Neoplasms/genetics ; Carcinoma, Basal Cell/genetics ; Chromosomes, Human, Pair 11/genetics ; Chromosomes, Human, Pair 7/genetics ; DNA Methylation/genetics ; Diabetes Mellitus, Type 2/genetics ; *Fathers ; Female ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genomic Imprinting/genetics ; Haplotypes ; Humans ; Iceland ; Male ; *Mothers ; Pedigree ; Polymorphism, Single Nucleotide/*genetics ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-08-01
    Description: Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687075/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687075/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stefansson, Hreinn -- Rujescu, Dan -- Cichon, Sven -- Pietilainen, Olli P H -- Ingason, Andres -- Steinberg, Stacy -- Fossdal, Ragnheidur -- Sigurdsson, Engilbert -- Sigmundsson, Thordur -- Buizer-Voskamp, Jacobine E -- Hansen, Thomas -- Jakobsen, Klaus D -- Muglia, Pierandrea -- Francks, Clyde -- Matthews, Paul M -- Gylfason, Arnaldur -- Halldorsson, Bjarni V -- Gudbjartsson, Daniel -- Thorgeirsson, Thorgeir E -- Sigurdsson, Asgeir -- Jonasdottir, Adalbjorg -- Jonasdottir, Aslaug -- Bjornsson, Asgeir -- Mattiasdottir, Sigurborg -- Blondal, Thorarinn -- Haraldsson, Magnus -- Magnusdottir, Brynja B -- Giegling, Ina -- Moller, Hans-Jurgen -- Hartmann, Annette -- Shianna, Kevin V -- Ge, Dongliang -- Need, Anna C -- Crombie, Caroline -- Fraser, Gillian -- Walker, Nicholas -- Lonnqvist, Jouko -- Suvisaari, Jaana -- Tuulio-Henriksson, Annamarie -- Paunio, Tiina -- Toulopoulou, Timi -- Bramon, Elvira -- Di Forti, Marta -- Murray, Robin -- Ruggeri, Mirella -- Vassos, Evangelos -- Tosato, Sarah -- Walshe, Muriel -- Li, Tao -- Vasilescu, Catalina -- Muhleisen, Thomas W -- Wang, August G -- Ullum, Henrik -- Djurovic, Srdjan -- Melle, Ingrid -- Olesen, Jes -- Kiemeney, Lambertus A -- Franke, Barbara -- GROUP -- Sabatti, Chiara -- Freimer, Nelson B -- Gulcher, Jeffrey R -- Thorsteinsdottir, Unnur -- Kong, Augustine -- Andreassen, Ole A -- Ophoff, Roel A -- Georgi, Alexander -- Rietschel, Marcella -- Werge, Thomas -- Petursson, Hannes -- Goldstein, David B -- Nothen, Markus M -- Peltonen, Leena -- Collier, David A -- St Clair, David -- Stefansson, Kari -- 089061/Wellcome Trust/United Kingdom -- G0901310/Medical Research Council/United Kingdom -- PDA/02/06/016/Department of Health/United Kingdom -- R01 MH078075/MH/NIMH NIH HHS/ -- R01MH71425-01A1/MH/NIMH NIH HHS/ -- England -- Nature. 2008 Sep 11;455(7210):232-6. doi: 10.1038/nature07229.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNS Division, deCODE genetics, Sturlugata 8, IS-101 Reykjavik, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18668039" target="_blank"〉PubMed〈/a〉
    Keywords: China ; Chromosomes, Human, Pair 1/genetics ; Chromosomes, Human, Pair 15/genetics ; Europe ; Gene Dosage/genetics ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genotype ; Humans ; Loss of Heterozygosity ; Models, Genetic ; Polymorphism, Single Nucleotide/genetics ; Psychotic Disorders/genetics ; Schizophrenia/*genetics ; Sequence Deletion/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-10-29
    Description: Meiotic recombinations contribute to genetic diversity by yielding new combinations of alleles. Recently, high-resolution recombination maps were inferred from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium (LD) patterns that capture historical recombination events. The use of these maps has been demonstrated by the identification of recombination hotspots and associated motifs, and the discovery that the PRDM9 gene affects the proportion of recombinations occurring at hotspots. However, these maps provide no information about individual or sex differences. Moreover, locus-specific demographic factors like natural selection can bias LD-based estimates of recombination rate. Existing genetic maps based on family data avoid these shortcomings, but their resolution is limited by relatively few meioses and a low density of markers. Here we used genome-wide SNP data from 15,257 parent-offspring pairs to construct the first recombination maps based on directly observed recombinations with a resolution that is effective down to 10 kilobases (kb). Comparing male and female maps reveals that about 15% of hotspots in one sex are specific to that sex. Although male recombinations result in more shuffling of exons within genes, female recombinations generate more new combinations of nearby genes. We discover novel associations between recombination characteristics of individuals and variants in the PRDM9 gene and we identify new recombination hotspots. Comparisons of our maps with two LD-based maps inferred from data of HapMap populations of Utah residents with ancestry from northern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) reveal population differences previously masked by noise and map differences at regions previously described as targets of natural selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Augustine -- Thorleifsson, Gudmar -- Gudbjartsson, Daniel F -- Masson, Gisli -- Sigurdsson, Asgeir -- Jonasdottir, Aslaug -- Walters, G Bragi -- Jonasdottir, Adalbjorg -- Gylfason, Arnaldur -- Kristinsson, Kari Th -- Gudjonsson, Sigurjon A -- Frigge, Michael L -- Helgason, Agnar -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- England -- Nature. 2010 Oct 28;467(7319):1099-103. doi: 10.1038/nature09525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland. kong@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981099" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chromosomes, Human/*genetics ; DNA-Binding Proteins/genetics ; Europe/ethnology ; Exons/genetics ; Female ; Genetics, Population ; Haplotypes/genetics ; Heterozygote ; Histone-Lysine N-Methyltransferase/genetics ; Humans ; Linkage Disequilibrium/genetics ; Male ; Meiosis/genetics ; Nigeria/ethnology ; Pedigree ; Polymorphism, Single Nucleotide/genetics ; Recombination, Genetic/*genetics ; Sample Size ; Selection, Genetic/genetics ; *Sex Characteristics ; Utah
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...