ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • HNLC  (2)
  • Opal  (2)
  • trace metals  (2)
Collection
Years
  • 1
    Publication Date: 2017-01-04
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 54 (2007): 601-638, doi:10.1016/j.dsr2.2007.01.013.
    Description: This paper investigates ballasting and remineralization controls of carbon sedimentation in the twilight zone (100-1000 m) of the Southern Ocean. Size-fractionated (〈1 μm, 1-51 μm, 〉51 μm) suspended particulate matter was collected by large volume in-situ filtration from the upper 1000 m in the Subantarctic (55°S, 172°W) and Antarctic (66°S, 172°W) zones of the Southern Ocean during the Southern Ocean Iron Experiment (SOFeX) in January-February 2002. Particles were analyzed for major chemical constituents (POC, P, biogenic Si, CaCO3), and digital and SEM image analyses of particles were used to aid in the interpretation of the chemical profiles. Twilight zone waters at 66°S in the Antarctic had a steeper decrease in POC with depth than at 55°S in the Subantarctic, with lower POC concentrations in all size fractions at 66°S than at 55°S, despite up to an order of magnitude higher POC in surface waters at 66°S. The decay length scale of 〉51 μm POC was significantly shorter in the upper twilight zone at 66°S (δe=26 m) compared to 55°S (δe=81 m). Particles in the carbonate-producing 55°S did not have higher excess densities than particles from the diatom-dominated 66°S, indicating that there was no direct ballast effect that accounted for deeper POC penetration at 55°S. An indirect ballast effect due to differences in particle packaging and porosities cannot be ruled out, however, as aggregate porosities were high (~97%) and variable. Image analyses point to the importance of particle loss rates from zooplankton grazing and remineralization as determining factors for the difference in twilight zone POC concentrations at 55°S and 66°S, with stronger and more focused shallow remineralization at 66°S. At 66°S, an abundance of large (several mm long) fecal pellets from the surface to 150 m, and almost total removal of large aggregates by 200 m, reflected the actions of a single or few zooplankton species capable of grazing diatoms in the euphotic zone, coupled with a more diverse particle feeding zooplankton community immediately below. Surface waters with high biomass levels and high proportion of biomass in the large size fraction were associated with low particle loading at depth, with all indications implying conditions of low export. The 66°S region exhibits this “High Biomass, Low Export” (HBLE) condition, with very high 〉51 μm POC concentrations at the surface (~2.1 μM POC), but low concentrations below 200 m (〈0.07 μM POC). The 66°S region remained HBLE after iron fertilization. Iron addition at 55°S caused a ten fold increase in 〉51 μm biomass concentrations in the euphotic zone, bringing surface POC concentrations to levels found at 66°S (~3.8 μM), and a concurrent decrease in POC concentrations below 200 m. The 55°S region, which began with moderate levels of biomass and stronger particle export, transitioned to being HBLE after iron fertilization. We propose that iron addition to already HBLE waters will not cause mass sedimentation events. The stability of an iron-induced HBLE condition is unknown. Better understanding of biological pump processes in non-HBLE Subantarctic waters is needed.
    Description: This work was supported by the DOE Office of Science, Biological and Environmental Research Program. Shiptime for SOFeX was funded by NSF.
    Keywords: Ballast ; Remineralization ; POC ; Twilight Zone ; Mesopelagic ; Southern Ocean ; MULVFS ; Opal ; Carbonate ; Phosphorus
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB1006, doi:10.1029/2005GB002557.
    Description: Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.
    Description: This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (KP1202030) to J. K. B and by NSFATM-9987457 to I. F. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under contract DE-AC03-76SF00098.
    Keywords: Iron ; Continental margin ; HNLC ; Subarctic Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-23
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L07608, doi:10.1029/2008GL033294.
    Description: Here we show that labile particulate iron and manganese concentrations in the upper 500 m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100–200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source of Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.
    Description: Funding from the US Department of Energy, Office of Science, Biological and Environmental Research Program (JB) and WHOI Postdoctoral Scholars program, the Richard B. Sellars Endowed Research Fund, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research (PL).
    Keywords: Iron ; Continental margin ; HNLC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-23
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 116 (2015): 303-320, doi:10.1016/j.dsr2.2014.11.020.
    Description: The concentration and the major phase composition (particulate organic matter, CaCO3, opal, lithogenic matter, and iron and manganese oxyhydroxides) of marine particles is thought to determine the scavenging removal of particle-reactive TEIs. Particles are also the vector for transferring carbon from the atmosphere to the deep ocean via the biological carbon pump, and their composition may determine the efficiency and strength of this transfer. Here, we present the first full ocean depth section of size-fractionated (1–51 µm, 〉51 µm) suspended particulate matter (SPM) concentration and major phase composition from the US GEOTRACES North Atlantic Zonal Transect between Woods Hole, MA and Lisbon, Portugal conducted in 2010 and 2011. Several major particle features are notable in the section: intense benthic nepheloid layers were observed in the western North American margin with concentrations of SPM of up to 1648 µg/L, two to three orders of magnitude higher than surrounding waters, that were dominated by lithogenic material. A more moderate benthic nepheloid layer was also observed in the eastern Mauritanian margin (44 µg/L) that had a lower lithogenic content and, notably, significant concentrations of iron and manganese oxyhydroxides (2.5% each). An intermediate nepheloid layer reaching 102 µg/L, an order of magnitude above surrounding waters, was observed associated with the Mediterranean Outflow. Finally, there was a factor of two enhancement in SPM at the TAG hydrothermal plume due almost entirely to the addition of iron oxyhydroxides from the hydrothermal vent. We observe correlations between POC and CaCO3 in large (〉51 µm) particles in the upper 2000 m, but not deeper than 2000 m, and no correlations between POC and CaCO3 at any depth in small (〈51 µm) particles. There were also no correlations between POC and lithogenic material in large particles. Overall, there were very large uncertainties associated with all regression coefficients for mineral ballast (“carrying coefficients”), suggesting that mineral ballast was not a strong predictor for POC in this section.
    Description: US and International GEOTRACES Offices (NSF OCE-0850963 and OCE-1129603)
    Keywords: Particles ; SPM ; CaCO3 ; Opal ; Biogenic silica ; POC ; Ballast ; Dust ; Lithogenic material
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-22
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1738-1758, doi:10.1029/2018GB005994.
    Description: Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and 232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th ;210Pb:210Po; 228Ra:228Th; and 234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and 232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.
    Description: This study grew out of a synthesis workshop at the Lamont‐Doherty Earth Observatory of Columbia University in August 2016. This workshop was sponsored by the U.S. GEOTRACES Project Office (NSF 1536294) and the Ocean Carbon and Biogeochemistry (OCP) Project Office (NSF 1558412 and NASA NNX17AB17G). The U.S. National Science Foundation supported all of the analytical work on GA03. Kuanbo Zhou measured 228Th in the large size class particles (NSF 0925158 to WHOI). NSF 1061128 to Stony Brook University supported the BaRFlux project, for which Chistina Heilbrun is acknowledged for laboratory and field work. The lead author acknowledges support from a start‐up grant from the University of Southern Mississippi. Two anonymous reviewers are thanked for their constructive comments. All GEOTRACES GA03 data used in this study are accessible through the Biological and Chemical Oceanography Data Management Office (http://data.bco‐dmo.org/jg/dir/BCO/GEOTRACES/NorthAtlanticTransect/), and derived parameters are reported in the supporting information.
    Description: 2019-05-22
    Keywords: biological carbon pump ; trace metals ; North Atlantic ; export ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-10
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 33(1), (2019): 15-36, doi:10.1029/2018GB005985.
    Description: Better constraints on the magnitude of particulate export and the residence times of trace elements are required to understand marine food web dynamics, track the transport of anthropogenic trace metals in the ocean, and improve global climate models. While prior studies have been successful in constructing basin‐scale budgets of elements like carbon in the upper ocean, the cycling of particulate trace metals is poorly understood. The 238U‐234Th method is used here with data from the GP‐16 GEOTRACES transect to investigate the upper ocean processes controlling the particulate export of cadmium, cobalt, and manganese in the southeastern Pacific. Patterns in the flux data indicated that particulate cadmium and cobalt behave similarly to particulate phosphorus and organic carbon, with the highest export in the productive coastal region and decreasing flux with depth due to remineralization. The export of manganese was influenced by redox conditions at the low oxygen coastal stations and by precipitation and/or scavenging elsewhere. Residence times with respect to export (total inventory divided by particulate flux) for phosphorus, cadmium, cobalt, and manganese in the upper 100 and 200 m were determined to be on the order of months to years. These GEOTRACES‐based synthesis efforts, combining a host of concentration and tracer data with unprecedented resolution, will help to close the oceanic budgets of trace metals.
    Description: This work was supported by the National Science Foundation (OCE‐1232669 and OCE‐1518110), and Erin Black was also funded by a NASA Earth and Space Science Graduate Fellowship (NNX13AP31H). The authors would like to thank the captain, crew, and scientists aboard the R/V Thomas G. Thompson. A special thanks to two anonymous reviewers and Virginie Sanial for providing the additional 228Ra‐based estimates for Cd. All original data have been made available in either the supporting information or through BCO‐DMO (see Website and Database References).
    Description: 2019-06-10
    Keywords: thorium ; export ; trace metals ; residence time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...