Publication Date:
2019-07-17
Description:
One intriguing and important issue of the Sudbury Structure concerns the source of the relatively large amount of C in the Onaping Formation Black member. This dilemma was recently addressed, and the conclusion was reached that an impactor could not have delivered all of the requisite C. Becker et al. have suggested that much of the C came from the impactor and reported the presence of interstellar He "caged" inside some fullerenes that may have survived the impact. So, conceivably, the C inventory in the Sudbury Structure comes from both target and impactor materials, although the known target rocks have little C. We discuss here the possibility of two terrestrial sources for at least some of the C: (1) impact evaporation/dissociation of C from carbonate target rocks and (2) the presence of heretofore-unrecognized C-rich (up to 26 wt%) siliceous "shale," fragments, which are found in the upper, reworked Black member. Experimental: Hypervelocity impact of a 0.635-diameter Al projectile into dolomite at 5.03 km/s (performed at the Ames Research Center vertical gun range) produced a thin, black layer (= 0.05 mm thick) that partially lined the crater and coated impactor remnants. Scanning electronic microscope (SEM) imagery shows this layer to be spongelike on a submicron scale and Auger spectroscopic analyses yield: 33% C, 22% Mg, 19% 0, and 9% Al (from the projectile). Elemental mapping shows that all of the available 0 is combined with Ca and Mg, Al is not oxidized, and C is in elemental form. Dissociation efficiency of C from CO2 is estimated to be 〈10% of crater volume. Raman spectroscopy indicates that the C is highly disorganized graphite. Another impact experiment [4] also produced highly disordered graphite from a limestone target (reducing collector), in addition to small amounts of diamond/lonsdaleite/chaoite (oxidizing collector). These experiments confirm the reduction of C from carbonates in impact vapor plumes. Observational: SEM observations and microprobe analyses of small, black shalelike inclusions in the upper Black Onaping indicate high C contents (7-26 wt% avg. = 16%). They contain mostly quartz and carbonaceous matter with small amounts of altered K-feldspar, clays, Fe oxide, and a sulfide. No evidence of shock is seen in quartz, and overall characteristics indicate a natural, lightly metamorphosed carbonaceous shale or mudstone that probably existed as a preimpact rock in the target region and distal fragments washed in during early crater filling. Fragments range in size from tens of microns to cm and increase in abundance in the upper Black toward the Onwatin contact, although their distribution is highly irregular. This increase corresponds to an increase in "organic" C with increasingly negative delta-13 C values and S, together with a decrease in fullerene abundance. In addition, we have found soot in acid-demineralized residues of the Onwatin but not in the Onaping samples. These data could be consistent with impact plume and atmospheric chemical processes, with possible diageneric ovedays. We are analyzing carbonaceous fractions of the Onaping and Onwatin to determine diagnostic C isotopic signatures Analyses by Whitehead et al. on bulk samples revealed no definitive source or processes, although delta-13 C values for "organic" C overlapped those for some meteorites. Discussion: If impact evaporation of Sudbury target carbonates did occur, then where are the carbonates? Distal carbonate (limestone/dolostone) exposures of the Espanola Formation (Huronian Supergroup) are generally thin-bedded, although remnants that partially encompass the Sudbury Crater are variable in thickness and may locally reach 250 m . If a carbonate thickness of 100-200 in existed at the target site, then copious amounts of C could have been reduced by impact processing of carbonates and also C-shale, depending on the efficiency of the processing and the amount of postimpact oxidation. Conclusion: The Sudbury crater offers a unique opportunity to study preserved characteristics of immediate carbonaceous fallback matter and particles of short-term residency in the impact plume as well as dust/aerosols from postimpact atmospheric processing.
Keywords:
Geophysics
Type:
Large Meteorite Impacts and Planetary Evolution; 7; LPI-Contrib-992
Format:
text
Permalink