ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Garnet  (1)
  • 1
    ISSN: 1432-2021
    Keywords: Key words High pressure ; Single-crystal diffraction ; Garnet ; Bulk modulus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The compression of synthetic pyrope Mg3Al2 (SiO4)3, almandine Fe3Al2(SiO4)3, spessartine Mn3Al2 (SiO4)3 grossular Ca3Al2(SiO4)3 and andradite Ca3Fe2 (SiO4)3 was studied by loading the crystals together in a diamond anvil cell. The unit-cell parameters were determined as a function of pressure by X-ray diffraction up to 15 GPa using neon as a pressure transmitting medium. The unit-cell parameters of pyrope and almandine were measured up to 33 and 21 GPa, respectively, using helium as a pressure medium. The bulk moduli, K T 0, and their first pressure derivatives, K T 0 ′, were simultaneously determined for all five garnets by fitting the volume data to a third order Birch-Murnaghan equation of state. Both parameters can be further constrained through a comparison of volume compressions between pairs of garnets, giving for K T 0 and K T 0 ′ 171(2) GPa and 4.4(2) for pyrope, 185(3) GPa and 4.2(3) for almandine, 189(1) GPa and 4.2 for spessartine, 175(1) GPa and 4.4 for grossular and 157(1) GPa and 5.1 for andradite, where the K T 0 ′ are fixed in the case of spessartine, grossular and andradite. Direct comparisons of the unit-cell volumes determined at high pressures between pairs of garnets reveal anomalous compression behavior for Mg2+ in the 8-fold coordinated triangular dodecahedron in pyrope. This agrees with previous studies concerning the compression behaviors of Mg2+ in 6-fold coordinated polyhedra at high pressures. The results show that simple bulk modulus–volume systematics are not obeyed by garnets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...