All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    Neural computing & applications 7 (1998), S. 334-342 
    ISSN: 1433-3058
    Keywords: Benchmarks ; Learning criteria ; Multilayer perceptron networks ; Pattern classification ; Radial basis function networks ; Training methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract This paper presents a study of two learning criteria and two approaches to using them for training neural network classifiers, specifically a Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) networks. The first approach, which is a traditional one, relies on the use of two popular learning criteria, i.e. learning via minimising a Mean Squared Error (MSE) function or a Cross Entropy (CE) function. It is shown that the two criteria have different charcteristics in learning speed and outlier effects, and that this approach does not necessarily result in a minimal classification error. To be suitable for classification tasks, in our second approach an empirical classification criterion is introduced for the testing process while using the MSE or CE function for the training. Experimental results on several benchmarks indicate that the second approach, compared with the first, leads to an improved generalisation performance, and that the use of the CE function, compared with the MSE function, gives a faster training speed and improved or equal generalisation performance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...